Tag Archives: industry

Firing up our start-ups

Firing up our start-ups

Stories of ‘unicorn’ Initial Public Offerings and billionaires in their 30s are great. But it’s the creation of quality jobs that truly makes innovation a national priority.

A recent report from the Office of the Chief Economist showed Australia added about one million jobs from 2006–11. Start-up companies added 1.4 million jobs, whereas older companies shed 400,000 jobs over the same period. But it’s not any start-up that matters; only 3.2% of start-ups take off in a dramatic fashion, providing nearly 80% of those new jobs. While Australia has a relatively high rate of companies starting up, the key seems to be getting more of them into high-growth mode.

When Israel faced a massive influx of immigrants after the collapse of the Soviet Union in 1990, it turned to innovation as a means of providing jobs. Given the country’s lack of natural resources, they didn’t have a choice. A population of four million people taking in one million more meant Israel had to become an innovative economy.

They grew their investment in research and development dramatically – to the point where Israel is now one of only two countries consistently spending more than 4% of GDP on R&D.

Israel has translated that spending into high-tech export success. Now, multinational technology company Intel employs over 10,000 Israelis. The Israeli Government is hands-on in its approach to de-risking early stage companies. But this is not achieved through government spending alone. In fact, the Israeli Government’s share of total R&D spending is just one-third of that of Australia, and its higher education sector is just one half. Business carries the lion’s share of R&D spending in Israel, making up 80% of the total, compared with 60% in Australia.

in text graph2

If we want jobs, we need innovation. We are in a unique period when there seems to be complete political agreement on this point. If we want innovation, we should take lessons from wherever we can learn them to develop the Australian system. A lesson from Israel is to use government spending more effectively at the early stages of company development to shift more start-ups into high-growth mode. If we could double the current 3.2% of today’s start-ups that become high-growth companies, we could provide more rewarding jobs for Australia’s future.

Israel concentrates almost 100% of its government innovation support for business on small and medium-sized enterprises. The comparable figure for Australia is 50% – a big hint for what we could do differently to fire up our start-up sector.

–Tony Peacock

Tony Peacock is CEO of the Cooperative Research Centres Association and founder of KnowHow.

Farm tech saves harvest

Farm tech saves harvest

The state produced 7.2 million tonnes of grain in 2015–16, slightly down on the 7.6 million tonnes harvested in 2014–15. Although it was the seventh consecutive year the state was above its 10-year average, the result was well below the five-year average of 8.2 million tonnes.

Wheat again led the way with 4.3 million tonnes while barley contributed 1.9 million tonnes.

Grain Producers SA CEO Darren Arney says it was a rollercoaster season courtesy of a slow start followed by a cold, wet winter and a very hot, dry spring.

“In the end it was quite incredible that we actually had the harvest that we did,” he says.

“The crops had the potential to yield another 15–20% if we’d had a normal spring so it could have been 8–9 million tonnes of grain.”

Arney says a fall in world grain prices generally had been offset by a falling Australian dollar.

He says varietal advances resulting in better strains of wheat and barley, more efficient matching of fertilisers and the strategic use of herbicides were among advances helping to achieve productivity gains.

“A similar rainfall year was probably 2007 where we produced 5.5–6 million tonnes so we’ve picked up 20–25% because of advancements in research and development and advancements in cropping systems,” says Arney.

The Upper South East and Western Eyre Peninsula regions recorded below average harvests while the Eastern Eyre Peninsula and Mid North regions experienced relatively good seasons, helping them to produce about a million tonnes each.

Extreme weather conditions in late November resulted in a fire in the Pinery area, which spread rapidly and burnt approximately 85,000 ha.

About 22,500 ha of unharvested crops were burnt with estimated crop losses of 60,000 tonnes of grain, 33,000 tonnes of hay and 50,000 tonnes of straw. The fire also destroyed 18,000 sheep and 87 cattle.

Agriculture Minister Leon Bignell says the farm gate value of the crop was estimated at $1.8 billion and the export value was estimated at $2.2 billion.

“Despite the challenging season, South Australia’s grain sector continues to be a powerhouse industry generating more than $4.6 billion in revenue in 2014–15, with approximately 85% exported around the world,” he says.

Primary Industries and Resources South Australia Grains Industry Account Manager Dave Lewis says overall the yields were highly variable.

“Wheat crops were generally more affected by the hot, dry finish with significant tonnages downgraded,” he says.

The future of grain research in South Australia has been secured through a joint $50 million investment by the State Government and the Grains Research and Development Corporation (GRDC).

Bignell says the five year deal included $25 million from GRDC and $25 million in-kind support from the State Government’s South Australian Research and Development Institute (SARDI).

“SARDI is the nation’s leading research provider in farming systems for low to medium rainfall areas, crop protection and improvement as well as projects such as the National Oat Breeding Program,” he says.

“SARDI will commit staff, equipment and resources to the value of $25 million and the GRDC will match the State Government’s investment with a cash investment.”

In other South Australian agriculture news, the State Government has welcomed the Federal Government’s decision to relocate offices of the GRDC and Fisheries Research and Development Corporation to Adelaide.

The latest results from the State Government’s soil improvement project have confirmed sandy soils can be greatly improved, resulting in increased grain yields.

Bignell says the New Horizons Project had shown vastly improved crop production at three trial sites through managing the top 50 cm of soil, rather than the traditional top 10 cm.

– Andrew Spence

This article was first published by The Lead on 10 February 2016. Read the original article here.

Finding space industry’s next Elon Musk

 

Crew Dragon pad abort test, part of the December 2015 mission. Credit SpaceX

Speakers at the 2016 Southern Hemisphere Space Studies Program Space and Entrepreneurism public event in Adelaide on January 28 have highlighted the challenges and opportunities on offer in the space industry.

Alex Grant, whose South Australian company Myriota is developing tiny devices to transmit data to and from remote locations, said finding commercially competitive ways to solve people’s problems was vital.

“If you can solve people’s problems at a price point they are willing to pay then that’s when you start getting investment, that’s when you start getting customers,” he said.

Flavia Tata Nardini, a former European Space Agency propulsion engineer, moved to Adelaide before founding Launchbox in 2014 to change the way people understood space science.

She has since also founded Fleet, which aims to use a constellation of low orbit satellites to bring cheap internet connections to the developing world.

Building a space industry

“Entrepreneurship is adventure and it’s a really hard adventure,” she told the audience at the University of South Australia’s Mawson Centre.

“You have to have an idea and then you have to make it happen … the only way you can do this is to understand where are the troubles … what is it that people need.

“For me it was a personal thing. When I arrived in Australia I thought I wanted to see that in 20 years everybody loved space, everybody was studying space.

“Launchbox is now a two-year-old company and it’s going great … I’ve seen so many students coming to me saying I want to study aerospace and be a space engineer because of you guys and that’s a very big achievement.”

Tata Nardini said the goal with Fleet was to provide internet for people all over the world who could not afford to pay more than $2 a month.

“To find investors we have learned to pitch what problem we are solving,” she said. “The problem we are solving is giving internet at very low cost to 3 billion people who are currently not connected.”

She said besides the strength to never give up, entrepreneurs need “a good analysis of what is out there, a good understanding of the problem you are trying to solve and a bit of luck.”

Brett Burford is the founder of AU Launch Services, an Adelaide-based consulting group that works with CubeSat manufacturers, owners and operators and serves as a single point of contact for clients.

Burford said finding the right niche required by the market was his key to establishing in the space industry.

“This is a million miles away from the first pre-conceived idea that I had but sometimes you just have to let go and say what does the market really need,” he said.

“You also need to understand the whole picture. There are regulatory issues, there are politics, there are a whole number of other factors that impact what you do.

“We really need to understand there is a market and we need to find out what the market needs are and realize we are not a space company, we provide services that require elements from space and that is the underpinning of what a space industry is.”

The next Elon Musk

Burford said global entrepreneurs in recent years like SpaceX founder Elon Musk had “brought space down closer to us than it has ever been”.

“And the closer that we feel to space the more we feel like maybe we can have some impact in that,” he said.

“When I first started looking into the space industry I came across a shortcut … what is the quickest way to become a space millionaire  … to be a billionaire and start investing in space.

“But luckily things are changing.”

First published on The Lead South Australia.

Growth factor

The Jack Hills are part of an ancient landscape of scorched red earth in the Pilbara region of Western Australia. But it wasn’t until 2001, when a rock from the hills was brought 800 km south to Curtin University’s John De Laeter Centre for Isotope Research (JDLC), that scientists discovered just how ancient this landscape really is. The Curtin scientists dated zircon crystals in the sample at 4.4 billion years, making it the oldest known Earth rock.

This groundbreaking research required a sophisticated measurement of trace elements in the crystal, and there are very few facilities in the world where this could have taken place. Zircon traps uranium in its crystal structure when it is formed. In principle, the radioactive decay of uranium into lead is like a ticking clock. If you can accurately measure how much lead has been created and how much uranium remains in a particular sample, you can work out when the crystal was formed. To do this, and to arrive at an age with an uncertainty of just 0.2%, Curtin researchers called upon the $4 million Sensitive High Resolution Ion Micro Probe (SHRIMP), the flagship technology of the JDLC. There are fewer than 20 SHRIMPs in the world, and Curtin is home to two of them.

“Zircon is like diamond – it’s forever,” explains JDLC Director, Professor Brent McInnes. Being a very hard and chemically inert material, zircon lasts for billions of years. The JDLC has world-renowned expertise in dating rocks by analysing the uranium-lead decay process in zircon.

The JDLC is also regularly put to more practical uses, such as aiding resource exploration in Western Australia. The SHRIMPs are the centrepieces of a suite of equipment worth $25 million, including scanning electron microscopes, transmission electron microscopes, ion beam milling instruments, laser probes and mass spectrometers.

“We are an open access lab,” explains McInnes. “These instruments can run 24 hours a day, seven days a week.” The JDLC collaborates with research groups around the world and also assists the Geological Survey of Western Australia to make maps used to attract investment in mining and petroleum exploration. Chinese Academy of Geological Sciences researchers use the instruments to do similar work in China, controlling the Perth-based SHRIMPs remotely from Beijing.

The JDLC facilities have also been used to solve practical problems for industry partners. When exploration company Independence Group NL found tin in a gravel bed at the base of a WA river, they turned to the JDLC to help identify the origins of the ore. Was it from a local source or had it been transported from elsewhere and deposited in the riverbed? Using SHRIMP, the JDLC team measured the quantities of trace uranium and lead elements in the tin ore cassiterite and calculated its age. When they performed similar measurements on zircon from local granite, they found its age was the same. This showed the tin was local, and helped the Independence Group pinpoint the precise locations to drill exploratory holes. “We have an incredible set of research tools that can be deployed to help industry reduce the risks and costs of exploration,” says McInnes.

“Recognising the gap, Curtin has set up a dedicated funding program, called Kickstart, to help translate lab research into commercial ventures.”


Collaborating with industry is a commonplace activity for John Curtin Distinguished Professor and Deputy Pro Vice Chancellor – Faculty of Science and Engineering, Moses Tadé. Industry possesses considerable experts, he says, yet still tends to approach academics when looking at something more fundamental. Tadé’s group brings a range of skills to the table, including expertise in multi-scale modelling, computational flow dynamics, reaction engineering and optimisation modelling. Collaboration is highly beneficial for both sides, he says.

Ongoing projects include the development of solid oxide fuel cells with a Melbourne-based fuel cell company, and a project in partnership with a petroleum industry multinational to remove mercury from oil and gas.     In recent years, sponsorship from leading minerals and exploration companies Chevron Australia and Woodside Energy has supported the growth of the Curtin Corrosion Engineering Industry Centre, of which Tadé is Director. The Centre looks to develop practical solutions to the problem of corrosion in gas pipelines, which can lead to costly leaks and dangerous explosions.

In another project, led by chemical engineer Professor Vishnu Pareek, Curtin has teamed up with Woodside to develop a more efficient way to regasify liquefied natural gas. Currently, natural gas from Australia is liquified so it can be transported efficiently by ship to overseas markets, particularly China. But once it gets there, the regasification process can burn up to 2% of the product. A new process being developed at Curtin uses the energy in the ambient air to aid regasification – a more efficient solution that will both increase profits and reduce CO2 emissions. “It’s very exciting,” says Tadé. “A big thing for the environment.”

Curtin has become a busy hub of innovation, with a spate of spin-off companies being created to translate the research. “We have a focused effort on commercialisation and research outcomes,” explains Rohan McDougall, Director of IP Commercialisation at Curtin.

Public funding of science and engineering research can often only take new technology to a certain level of development such as ‘proof-of-concept’. Securing funds from investors to turn pre-commercial work into a real-world product is tough as investors are wary at this early high-risk stage. “The gap is traditionally known as the ‘valley of death’,” says McDougall. Recognising this gap, Curtin has set up a dedicated funding program, called Kickstart, to help translate lab research into commercial ventures.

in-text1

The John De Laeter Centre for Isotope Research, led by Professor Brent McInnes (left) – which has a team of scientists, including Associate Professor Noreen Evans (right), and a $25 million suite of equipment – assists resource exploration in Western Australia.
The John De Laeter Centre for Isotope Research, led by Professor Brent McInnes (above top) – which has a team of scientists, including Associate Professor Noreen Evans (above bottom), and a $25 million suite of equipment – assists resource exploration in Western Australia.

As well as the extra funding, commercialisation is aided at Curtin by strong links with the venture capital community and industry, which advise on commercialisation routes and intellectual property. The university also encourages an innovation environment by running contests in which staff and students describe technologies they     are working on and that may have commercial applications.

This commercialisation focus has reaped dividends in terms of successful spin-off companies. In the medical space, Neuromonics sells a device for the treatment of the auditory condition tinnitus. In digital technology, iCetana has developed a video analytics technology for security applications. Skrydata, a data analytics company, provides a service for extracting patterns from big data. Sensear has developed sophisticated hearing equipment technology for high-noise environments such as oil and gas facilities.

One of the biggest recent success stories has been Scanalyse, which in 2013 won the prestigious Australian Museum Rio Tinto Eureka Prize for Commercialisation of Innovation. Scanalyse grew out of a collaboration between Curtin and Alcoa, one of the world’s largest aluminium producers. Alcoa called on Curtin’s experts to find a way to analyse the grinders used in their mills. Every time a grinder wore out, it was costing ~$100,000/hour in downtime. It was crucial to monitor the condition of these machines, but this required someone to climb inside and take measurements. Through their 2005 collaboration with Alcoa, spatial scientists at Curtin developed a laser scanning system capable of measuring 10 million points in just 30 minutes.

“At the same time, they developed a software tool that could be applied more generally,” explains McDougall. “So the business was established to look at the application of that technology to mills and other mine site equipment.”

Scanalyse has since found customers in more than 20 countries and is making an impact worldwide. In 2013, it was bought by Finnish engineering giant Outotec.

Cathal O’Connell

Small scale, big consequences

The nanoscale is so tiny it’s almost beyond comprehension. Too small for detection by the human eye, and not even discernible by most laboratory microscopes, it refers to measurements in the range of 1–100 billionths of a metre. The nanoscale is the level at which atoms and molecules come together to form structured materials.

The Nanochemistry Research Institute — NRI — conducts fundamental and applied research to understand, model and tailor materials at the nanoscale. It brings together scientists – with expertise in chemistry, engineering, computer simulations, materials and polymers – and external collaborators to generate practical applications in health, energy, environmental management, industry and exploration. These include new tests for cancer, and safer approaches to oil and gas transportation. Research ranges from government-funded exploratory science to confidential industry projects.


The NRI hosts research groups with specialist expertise in the chemical formation of minerals and other materials. “To understand minerals, it’s often important to know what is going on at the level of atoms,” explains Julian Gale, John Curtin Distinguished Professor in Computational Chemistry and former Acting Director of the NRI. “To do this, we use virtual observation – watching how atoms interact at the nanoscale – and modelling, where we simulate the behaviour of atoms on a computer.”

The mineral calcium carbonate is produced through biomineralisation by some marine invertebrates. “If we understand the chemistry that leads to the formation of carbonates in the environment, then we can look at how factors such as ocean temperature and pH can lead to the loss of minerals that are a vital component of coral reefs,” says Gale.

This approach could be used to build an understanding of how minerals are produced biologically, potentially leading to medical and technological benefits, including applications in bone growth and healing, or even kidney stone prevention and treatment.

Gale anticipates that a better understanding of mineral geochemistry may also shed light on how and where metals are distributed. “If you understand the chemistry of gold in solution and how deposits form, you might have a better idea where to look for the next gold mine,” he explains.

There are also environmental implications. “Formation of carbonate minerals, especially magnesium carbonate and its hydrates, has been proposed as a means of trapping atmospheric carbon in a stable solid state through a process known as geosequestration. We work with colleagues in the USA to understand how such carbonates form,” says Gale.

Minerals science is also relevant in industrial settings. Calcium carbonate scaling reduces flow rates in pipes and other structures in contact with water. “As an example, the membranes used for reverse osmosis in water desalination – a water purification technology that uses a semipermeable membrane to remove salt and other minerals from saline water – can trigger the formation of calcium carbonate,” explains Gale. “This results in partial blockage of water flow through the membrane, and reduced efficiency of the desalination process.”

A long-term aim of research in this area is to design water membranes that prevent these blockages. There are also potential applications in the oil industry, where barium sulphate (barite) build-up reduces the flow in pipes, and traps dangerous radioactive elements such as radium.

Another problem for exploration companies is the formation of hydrates of methane and other low molecular weight hydrocarbon molecules. These can block pipelines and processing equipment during oil and gas transportation and operations, which results in serious safety and flow assurance issues. Materials chemist Associate Professor Xia Lou leads a large research group in the Department of Chemical Engineering that is developing low-dose gas hydrates inhibitors to prevent hydrate formation. “We also develop nanomaterials for the removal of organic contaminants in water, and nanosensors to detect or extract heavy metals,” she says.

“To understand minerals, it’s often important to know what is going on at the level of the atom.”


The capacity to control how molecules come together and then disassociate offers tantalising opportunities for product development, particularly in food science, drug delivery and cosmetics. In the Department of Chemistry, Professor Mark Ogden conducts nanoscale research looking at hydrogels, or networks of polymeric materials suspended in water.

“We study the 3D structure of hydrogels using the Institute’s scanning probe microscope,” says Ogden. “The technique involves running a sharp tip over the surface of the material. It provides an image of the topography of the surface, but we can also measure how hard, soft or sticky the surface is.” Ogden is developing methods for watching hydrogels grow and fall apart through heating and cooling. “We have the capability to do that sort of imaging now, and this in situ approach is quite rare around the world,” he says.

Ogden also conducts chemical research with a group of metals known as lanthanoids, which are rare-earth elements. His recent work, in collaboration with the Australian Nuclear Science and Technology Organisation (ANSTO), discovered unique elongated nanoscale structures.

“We’ve identified lanthanoid clusters that can emit UV light and have magnetic properties,” explains Ogden. “Some of these can form single molecule magnets. A key outcome will be to link cluster size and shape to these functional properties.” This may facilitate guided production of magnetic and light-emitting materials for use in sensing and imaging technologies.

“If you understand the chemistry of gold … then you might have a better idea of where to start looking for the next gold mine.”


The NRI is working across several areas of chemistry and engineering to develop nanoscale tools for detecting and treating health conditions. Professor Damien Arrigan applies a nanoscale electrochemical approach to detecting biological molecules, also known as biosensing. He and his Department of Chemistry colleagues work at the precise junction between layered oil and water.

“We make oil/water interfaces using membranes with nanopores, some as small as 15 nanometres,” he says. “This scale delivers the degree of sensitivity we’re after.” The scientists measure the passage of electrical currents across the tiny interfaces and detect protein, which absorbs at the boundary between the two liquids. “As long as we know a protein’s isoelectric point – that is, the pH at which it carries no electrical charge – we can measure its concentration,” he explains.

The technique enables the scientists to detect proteins at nanomolar (10−6 mol/m3) concentrations, but they hope to shift the sensitivity to the picomolar (10−9 mol/m3) range – a level of detection a thousand times more sensitive and not possible with many existing protein assessments. Further refinement may also incorporate markers to select for proteins of interest. “What we’d like to do one day is measure specific proteins in biological fluids like saliva, tears or serum,” says Arrigan.

The team’s long-term vision is to develop highly sensitive point-of-need measurements to guide treatments – for example, testing kits for paramedics to detect markers released after a heart attack so that appropriate treatment can be immediately applied.

Also in the Department of Chemistry, Dr Max Massi is developing biosensing tools to look at the health of living tissues. His approach relies on tracking the location and luminescence of constructed molecules in cells. “We synthesise new compounds based on heavy metals that have luminescent properties,” explains Massi. “Then we feed the compounds to cells, and look to see where they accumulate and how they glow.”

The team synthesises libraries of designer chemicals for their trials. “We know what properties we’re after – luminescence, biological compatibility and the ability to go to the part of the cell we want,” says Massi.

For example, compounds can be designed to accumulate in lysosomes – the tiny compartments in a cell that are involved in functions such as waste processing. With appropriate illumination, images of lysosomes can then be reconstructed and viewed in 3D using a technique known as confocal microscopy, enabling scientists to assess lysosome function. Similar approaches are in development for disease states such as obesity and cancer.

Beyond detection, this technique also has potential for therapeutic applications. Massi has performed in vitro studies with healthy and cancerous cells, suggesting that a switch from detection to treatment may be possible by varying the amount of light used to illuminate the cells.

“A bit of light allows you to visualise. A lot of light will allow you to kill the cells,” explains Massi. His approach is on track for product development, with intellectual property protection filed in relation to using phosphorescent compounds to determine the health status of cells.

Improving approaches to cancer treatment is also an ongoing research activity for materials chemist Dr Xia Lou, who designs, constructs and tests nanoparticles for targeted photodynamic therapy, which aims to selectively kill tumours using light-induced reactive oxygen species.

“We construct hybrid nanoparticles with high photodynamic effectiveness and a tumour-targeting agent, and then test them in vitro in our collaborators’ laboratories,” she says. “Our primary interest is in the treatment of skin cancer. The technology has also extended applications in the treatment of other diseases.” Lou has successfully filed patents for cancer diagnosis and treatment that support the potential of this approach.


Spheres and other 3D shapes constructed at the nanoscale offer potential for many applications centred on miniaturised storage and release of molecules and reactivity with target materials. Dr Jian Liu in the Department of Chemical Engineering develops new synthesis strategies for silica or carbon spheres, or ‘yolk-shell’-structured particles. “Our main focus is the design, synthesis and application of colloidal nanoparticles including metal, metal oxides, silica and carbon,” says Liu.

Most of these colloidal particles are nanoporous – that is, they have a lattice-like structure with pores throughout. The applications of such nanoparticles include catalysis, energy storage and conversion, drug delivery and gene therapy.

“The most practical outcome of our research would be the development of new catalysts for the production of synthetic gases, or syngas,” he says. “It may also lead to new electrodes for lithium-ion batteries.” Once developed, nanoscale components for this type of rechargeable battery are expected to bring improved safety and durability, and lower costs.


Atomic Modelling matters in research

Professor Julian Gale leads a world-class research group in computational materials chemistry at the NRI. “We work at the atomic level, looking at fundamental processes by which materials form,” he says. “We can simulate up to a million atoms or more, and then test how the properties and behaviour of the atoms change in response to different experimental conditions.” Such research is made possible through accessing a petascale computer at WA’s Pawsey Centre – built primarily to support Square Kilometre Array pathfinder research.

The capacity to model the nanoscale behaviour of atoms is a powerful tool in nanochemistry research, and can give direction to experimental work. The calcium carbonate mineral vaterite is a case in point. “Our theoretical work on calcium carbonate led to the proposal that the mineral vaterite was actually composed of at least three different forms,” Gale explains. “An international team found experimental evidence which supported this idea.”

NRI Director Professor Andrew Lowe regards this capacity as an asset. “Access to this kind of atomic modelling means that our scientists can work within a hypothetical framework to test whether a new idea is likely to work or not before they commit time and money to it,” he explains.

Scientists at Curtin’s Nanochemistry Research Institute investigate minerals at an atomic level, which can, for example, build an understanding of mineral loss in coral reefs.
Scientists at Curtin’s Nanochemistry Research Institute investigate minerals at an atomic level, which can, for example, build an understanding of mineral loss in coral reefs.

New direction

Formally established in 2001, the Nanochemistry Research Institute began a new era in 2015 through the appointment of Professor Andrew Lowe as Director. Working under his guidance are academic staff and postdoctoral fellows, as well as PhD, Honours and undergraduate science students.

An expert in polymer chemistry, Lowe’s research background adds a new layer to the existing strong multidisciplinary nature of the Institute. “Polymers have the potential to impact on every aspect of fundamental research,” he says. “This will add a new string to the bow of Curtin University science and engineering, and open new and exciting areas of research and collaboration.”

Polymers are a diverse group of materials composed of multiple repeated structural units connected by chemical bonds. “My background is in water-soluble polymers and smart polymers,” explains Lowe. “These materials change the way they behave in response to their external environment – for example, a change in temperature, salt concentrations, pH or the presence of other molecules including biomolecules. Because the characteristics of the polymeric molecules can be altered in a reversible manner, they offer potential to be used in an array of applications, including drug delivery, catalysis and surface modification.”

Lowe has particular expertise in RAFT dispersion polymerisation, a technique facilitating molecular self-assembly to produce capsule-like polymers in solution. “This approach allows us to make micelles, worms and vesicles directly,” he says, describing the different physical forms the molecules can take. “It’s a novel and specialised technique that creates high concentrations of uniformly-shaped polymeric particles at the nanoscale.” Such polymers are candidates for drug delivery and product encapsulation.

Sarah Keenihan

Beneath the surface

CSIRO scientists have revealed how much water lies beneath the surface of the parched Pilbara landscape in a study to help safeguard the resource as mining and agriculture expands in the region and the climate changes.

The $3.5 m Pilbara Water Resource Assessment project found the area’s extreme heat evaporates up to 14 times more water than falls as rain – highlighting the region’s dependence on groundwater.

The work also revealed 8–30 mm of rainfall is required to make the rivers and streams flow, and that the region is getting hotter and drier in some areas and wetter in others.

CSIRO hydrologist and study leader Dr Don McFarlane says researchers now have a framework to study the impacts of mining and better manage local water use.

The mining industry abstracts about 550 gigalitres of water a year in the area and half of that is used for ore processing, dust suppression and consumption.

Beneath the surface
Iron ore being transported by rail in the Pilbara. Credit: CSIRO

One gigalitre is the equivalent of Subiaco Oval, a stadium in Western Australia, filled to the brim. This figure is expected to double by 2042.

“Mine sites are often separate enough from each other not to interact… however current mining and new mines are increasingly below the water table requiring very large volumes to be extracted and there are several areas where multiple mines are interacting with each other,” Dr McFarlane says.

The Pilbara is a land of extremes, suffering through some of the hottest temperatures in the country, while its unpredictable rainfall comes mostly from summer thunderstorms and cyclones.

“It [the study] puts streamflow and recharge volumes into relative perspective,” he says.

“Nine aquifer types were identified and they interact in complex ways with each other and especially with streamflow.”

Beneath the surface
The pipeline that takes water to the West Pilbara Water Supply Scheme. Credit: CSIRO

In addition, the WA Government is investing $40 million to expand irrigated agriculture and enlarge the Pilbara’s grazing industry.

The research, which was funded by industry and government, analysed climate data since 1910, the relationship between rainfall and runoff since 1961 and how that impacts groundwater levels over an area of 300,000 km– an area which is slightly larger than New Zealand.

The researchers say streamflow leaks through riverbeds and is the main source of aquifer replenishment.

According to the three-year study, groundwater-dependent ecosystems expanded and contracted with the weather but the number has remained stable during the past 23 years.

Dr McFarlane says analysis of satellite remote sensing images could play a role in monitoring the future impacts of climate, grazing, fire, feral animals and mining on groundwater-dependent ecosystems and vegetation.

– 

This article was first published by Science Network Western Australia. Read the original article here.

New tool for grapevines

New tool for grapevines

Featured image: courtesy of Wine Australia

A new tool for grapevines, a free phone app developed by University of Adelaide researchers, will help grape growers and viticulturists manage their vines by giving a quick measure of vine canopy size and density.

The iPad and iPhone app uses the devices’ camera and GPS capability to calculate the size and density of the vine canopy and its location in the vineyard. The aim is to help users monitor their vines and manage the required balance between vegetative growth and fruit production. 

The development of the app – called VitiCanopy – has been supported by Wine Australia as part of a wider project investigating the relationships between vine balance and wine quality. 

“Overcropped vines or vines with excessive canopy are referred to as ‘out-of-balance’ – generally being associated with lower quality fruit and hence lower returns,” says project leader Dr Cassandra Collins, Senior Lecturer in Viticulture with the School of Agriculture, Food and Wine.

“To achieve vine balance, grapevines require enough leaf area to ripen the fruit and produce a desired fruit quality, but not too much that it’s detrimental to fruit development through shading or a higher incidence of disease.” 

Vine balance can be measured as a ratio of leaf area to fruit yield. Traditional ways, however, of measuring leaf area are tedious, laborious and time-consuming and can damage the vines – or alternatively it can require expensive and complex instruments. 

“Our app offers a very simple way to measure leaf area index (LAI),” says chief investigator Dr Roberta De Bei. “This measurement can then be related to fruit yield for an assessment of vine balance as well as capture canopy variation across a vineyard. The GPS capability of the app means that information gathered can also be mapped.” 

The research and development team also included Professor Steve Tyerman and Associate Professor Matthew Gilliham, University of Adelaide, and Dr Sigfredo Fuentes, University of Melbourne, and Treasury Wine Estates.

Wine Australia’s Research Development and Extension Portfolio Manager, Dr Liz Waters, says this new app will help viticulturists optimise vine balance for best grape quality. 

“Wine Australia is committed to helping viticulturists manage their vines to maximise quality, profit and sustainability and to improve competitiveness across the grape and wine community. We encourage growers to explore this new tool to help them get the most from their vineyards,” says Waters. 

The app is available from Apple’s app store. To use the app a grower takes a standardised image of the vine canopy. The app then analyses the image and calculates LAI, taking into account the canopy shape and density, and recording the time and location of the image. An android version of the app is being developed. 

The University’s commercialisation company, Adelaide Research & Innovation (ARI), has supported the release of the app. The project was supported by Wine Australia, the University of Adelaide Wine Future initiative (formerly the Wine2030 Research Network) and The Vineyard of the Future.

This article was first published on 22 October by the University of Adelaide. Read the original article here.


About Wine Australia

Wine Australia supports a competitive wine sector by investing in research, development and extension (RD&E), growing domestic and international markets and protecting the reputation of Australian wine.

Wine Australia is funded by grape growers and winemakers through levies and user-pays charges and the Australian Government, which provides matching funding for RD&E investments. 

Wine Australia is the trading name of the Australian Grape and Wine Authority, a Commonwealth statutory authority established under the Australian Grape and Wine Authority Act 2013.

 

new Chief Scientist

Dr Alan Finkel will be Australia’s new Chief Scientist

Featured photo: Greg Ford/Monash University

New Chief Scientist Dr Alan Finkel will take over the role once the sitting Chief Scientist, Professor Ian Chubb, finishes his five-year stint in the job on 31 December this year.

Finkel was most recently Chancellor of Monash University, a post he has held since 2008. He is also the President of the Australian Academy of Technological Sciences and Engineering (ATSE).

New Chief Scientist Finkel is an outspoken advocate for science awareness and popularisation. He is a patron of the Australian Science Media Centre and has helped launch popular science magazine, Cosmos.

He is also an advocate for nuclear power, arguing that “nuclear electricity should be considered as a zero-emissions contributor to the energy mix” in Australia.

The Australian Academy of Science (AAS) President, Professor Andrew Holmes, welcomes the expected appointment of Finkel to the new Chief Scientist role.

“The Academy is looking forward to the government’s announcement, but Finkel would be an excellent choice for this position. I’m confident he would speak strongly and passionately on behalf of Australian science, particularly in his advice to government,” he says.

“The AAS and ATSE have never been closer; we have worked together well on important issues facing Australia’s research community, including our recent partnership on the Science in Australia Gender Equity initiative.”

Holmes also thanked outgoing Chief Scientist for his strong leadership for science in Australia, including establishing ACOLA as a trusted source of expert, interdisciplinary advice to the Commonwealth Science Council.

“Since his appointment, Chubb has been a tireless advocate of the fundamental importance of science, technology engineering and mathematics (STEM) skills as the key to the country’s future prosperity, and a driving force behind the identification of strategic research priorities for the nation,” says Holmes.

This article was first published on The Conversation on 26 October 2015. Read the original article here.

Expert reactions:

Karen Taylor is Founder and Business Director of Refraction Media

“Finkel is an energetic advocate for STEM across all levels of society, from schools and the general public to corporate leaders. We’re excited and optimistic about the fresh approach science and innovation is enjoying.” 

Professor Emeritus Sir Gustav Nossal is Emeritus Professor in the Department of Pathology at the University of Melbourne

“This is truly the most fantastic news. Finkel is an extraordinary leader. He has proven himself in personal scientific research. He has succeeded in business in competitive fields. It is difficult to think of anyone who would do this important job with greater distinction.”

Dr Ross Smith is President of Science & Technology Australia

“Finkel has a profound understanding of the place of science in a flourishing modern economy, as a scientist, entrepreneur and science publisher of real note. We look forward to working closely with Finkel, as we jointly pursue better links between STEM and industry.”

Prime Minister’s Prizes for Science

Australian scientists and science educators have been honoured at the annual Prime Minister’s Prizes for Science. The awards, introduced in 2000, are considered Australia’s most prestigious and highly regarded awards, and are given in recognition of excellence in scientific research, innovation and science teaching.

The awards acknowledge and pay tribute to the significant contributions that Australian scientists make to the economic and social betterment in Australia and around the world, as well as inspiring students to take an interest in science.

Previous winners include Professor Ryan Lister (Frank Fenner Prize for Life Scientist of the Year in 2014) for his work on gene regulation in agriculture and in the treatment of disease and mental health, and Debra Smith (Prime Minister’s Prize for Excellence in Science Teaching in Secondary Schools in 2010) for her outstanding contribution in redefining how science is taught in Queensland and across the rest of Australia.

This year’s winners were announced by the Prime Minister, Malcolm Turnbull and Christopher Pyne, Minister for Industry, Innovation and Science at a press conference at Parliament House in Canberra yesterday, which was also attended by the Chief Scientist, Professor Ian Chubb.

The 2015 recipients are:

This year’s winner of the Prime Minister’s Prize for Science is Professor Graham Farquhar, Distinguished Professor of the Australian National University’s (ANU) Research School of Biology , a Chief Investigator of the Australian Research Council’s (ARC) Centre of Excellence for Translational Photosynthesis, and leader of the Science and Industry Endowment Fund project on Forests for the Future: making the most of a high [CO2] world.

Professor Farquhar’s models of plant biophysics has led to a greater understanding of cells, whole plants and forests, as well as the creation of new water-efficient wheat varieties. His work has transformed our understanding of the world’s most important biological reaction: photosynthesis.

Farquhar’s most recent research on climate change is seeking to determine which trees will grow faster in a carbon dioxide enriched atmosphere. “Carbon dioxide has a huge effect on plants. My current research involves trying to understand why some species and genotypes respond more to CO2 than others,” he says. And he and colleagues have uncovered a conundrum: global evaporation rates and wind speeds over the land are slowing, which is contrary to the predictions of most climate models. “Wind speed over the land has gone down 15% in the last 30 years, a finding that wasn’t predicted by general circulation models we use to form the basis of what climate should be like in the future,” he says. This startling discovery means that climate change may bring about a wetter world.

“Our world in the future will be effectively wetter, and some ecosystems will respond to this more than others.”

Professor Farquhar will also receive $250,000 in prize money. Looking forward he is committed to important projects, such as one with the ARC looking at the complex responses of plant hydraulics under very hot conditions.

“It’s important to understand if higher temperatures will negatively affect the plants in our natural and managed ecosystems, and if higher temperatures are damaging, we need to understand the nature of the damage and how we can minimise it.”

You can find out more about the 2015 winners including profiles, photos and videos here.

– Carl Williams

protect yourself from cyberattack

Four things to protect yourself from cyberattack

It’s easy to get lost in a sea of information when looking at cybersecurity issues – hearing about hacks and cyberattacks as they happen is a surefire way to feel helpless and totally disempowered.

What follows is a sort of future shock, where we become fatalistic about the problem. After all, 86% of organisations from around the world surveyed by PwC reported exploits of some aspect of their systems within a one year period. That represented an increase of 38% on the previous year.

However, once the situation comes into focus, the problem becomes much more manageable. There are a range of things that can we can easily implement to reduce the risk of an incident dramatically.

For example, Telstra estimates that 45% of security incidents are the result of staff clicking on malicious attachments or links within emails. Yet that is something that could be fairly easily fixed.

Confidence gap

There is currently a gap between our confidence in what we can do about security and the amount we can actually do about it. That gap is best filled by awareness.

Many organisations, such as the Australian Centre for Cyber Security, American Express and Distil Networks provide basic advice to help us cope with future shock and start thinking proactively about cybersecurity.

The Australia Signals Directorate (ASD) – one of our government intelligence agencies – also estimates that adhering to its Top Four Mitigation Strategies would prevent at least 85% of targeted cyberattacks.

So here are some of the top things you can do to protect yourself from cyberattack:

1 Managed risk

First up, we need to acknowledge that there is no such thing as perfect security. That message might sound hopeless but it is true of all risk management; some risks simply cannot be completely mitigated.

However, there are prudent treatments that can make risk manageable. Viewing cybersecurity as a natural extension of traditional risk management is the basis of all other thinking on the subject, and a report by CERT Australia states that 61% of organisations do not have cybersecurity incidents in their risk register.

ASD also estimates that the vast majority of attacks are not very sophisticated and can be prevented by simple strategies. As such, think about cybersecurity as something that can managed, rather than cured.

2 Patching is vital

Patching is so important that ASD mentions it twice on its top four list. Cybersecurity journalist Brian Krebs say it three times: “update, update, update”.

Update your software, phone and computer. As a rule, don’t use Windows XP, as Microsoft is no longer providing security updates.

Updating ensures that known vulnerabilities are fixed and software companies employ highly qualified professionals to develop their patches. It is one of the few ways you can easily leverage the cybersecurity expertise of experts in the field.

3 Restricting access means restricting vulnerabilities

The simple rule to protect yourself from cyberattack is: don’t have one gateway for everything. If all it takes to get into the core of a system is one password, then all it takes is one mistake for the gate to be opened.

Build administrator privileges into your system so that people can only use what they are meant to. For home businesses it could mean something as simple as having separate computers for home and work, or not giving administrator privileges to your default account.

It could also be as simple as having a content filter on employee internet access so they don’t open the door when they accidentally click on malware.

4 Build permissions from the bottom up

Application whitelisting might sound complicated, but what it really means is “deny by default”: it defines, in advance, what is allowed to run and ensures that nothing else will.

Most people think of computer security as restricting access, but whitelisting frames things in opposite terms and is therefore much more secure. Most operating systems contain whitelisting tools that are relatively easy to use. When used in conjunction with good advice, the result is a powerful tool to protect a network.

The Australian Signals Directorate released a video in 2012 with an overview of cyber threats.

Protect yourself from cyberattack: Simple things first

Following these basic rules covers the same ground as ASD’s top four mitigation strategies and substantially lowers vulnerability to protect yourself from cyberattack. If you want to delve deeper, there are more tips on the ASD site.

There are many debates that will follow on from this, such as: developing a national cybersecurity strategy; deciding if people should have to report an incident; the sort of insurance that should be available; what constitutes a proportionate response to an attack; and a whole range of others.

Each of those debates is underpinned by a basic set of information that needs to be implemented first. Future shock is something that can be overcome in this space, and there are relatively simple measures that can be put into place in order to make us more secure. Before embarking on anything complicated, you should at least get these things right to protect yourself from cyberattack.

This article was first published by The Conversation on 16 October 2015. Read the original article here.

Continents collide

Continents collide

Collecting rock samples at 5200 m on a recent trip to the Tibetan Plateau, Professor Simon Wilde, from the Department of Applied Geology at Curtin University, was pleased to have avoided the symptoms of altitude sickness. The last time he conducted fieldwork in a similar environment had been about 20 years before in Kyrgyzstan, Central Asia, and he’d managed then to also avoid altitude headaches. Nonetheless, he says, Tibet was tough. Due to the atmospheric conditions, the Sun was intensely strong and hot but the ground was frozen. “It’s a strange environment,” he says.

Wilde was invited by scientists at the Guangzhou Institute of Geochemistry, part of the Chinese Academy of Sciences, to collect volcanic rock samples at the Tibetan site. The region is geologically significant because it is where the Indian tectonic plate is currently “driving itself under the Eurasian plate”, he explains. During their recent field trip, Wilde and his Chinese colleagues collected about 100 kg of rocks, which were couriered back to Guangzhou and Curtin for study. The researchers will be drawing on a variety of geochemistry techniques to analyse the material as they try to paint a picture of what happens when two continents collide, gaining insight into the evolution of Earth’s crust.

“We’re trying to unravel a mystery in a sense,” says Wilde. “We don’t have the full information, so we’re trying to use everything we can to build up the most likely story.”

The Guangzhou geochemists will be analysing trace elements in the rock samples to uncover information about their origins and formation. Back at Curtin, Wilde is working on determining the age of zircon crystals collected from the site, using a technique called isotopic analysis. This involves measuring the ratios of atoms of certain elements with different numbers of neutrons (isotopes) to reveal the age of crystals based on known rates of radioactive decay.

It’s work that’s providing a clearer picture of Earth’s early crustal development and is an area in which Wilde is internationally renowned (see profile, p18).

Gaining an idea of the past distribution of Earth’s continental crust has implications for the resources sector, Wilde explains. “It’s important for people working in metallogeny [the study of mineral deposits] to see where pieces of the crust have perhaps broken off and been redistributed,” he says. “There could be continuation of a mineral belt totally removed and on another continent.”


Continents collide: Copper in demand

Professor Brent McInnes, Director of the John De Laeter Centre for Isotope Research, is also interested in the collision of tectonic plates – to help supply China’s increasing demand for domestic copper. “The rapid urbanisation of China since the 1990s has created a significant demand for a strategic supply of domestic copper, used in air conditioners, electrical motors and in building construction,” explains McInnes. Most of the world’s supply of copper comes from a specific mineral deposit type known as porphyry systems, which are the exposed roots of volcanoes formed during tectonic plate collisions.

McInnes’ research involves taking samples from drill cores, rock outcrops and mine exposures in mountainous regions around the world to be studied back in the lab. Specifically, he and his research team are able to elucidate information about the depth, erosion and uplift rate of copper deposits using a technique called thermochronology – a form of dating that takes into account the ‘closure temperature’, or temperature below which an isotope is locked into a mineral. Using this information, scientists can reveal the temperature of an ore body at a given time in its geological history. This, in turn, provides information with important implications for copper exploration, such as the timing and duration of the mineralisation process, as well as the rate of exposure and erosion.

“Institutions such as the Chinese Academy of Sciences have been awarded large research grants to investigate porphyry copper deposits in mountainous terrains in southern and western China, and have sought to form collaborations with world-leading researchers in the field,” says McInnes.

“We’re trying to unravel a mystery, in a sense. We don’t have the full information, so we’re trying to use everything we can to build up the most likely story.”


Continents collide: Interpreting species loss

Professor Kliti Grice, founding Director of the WA-Organic and Isotope Geochemistry Centre, researches mass extinctions. As an organic and isotope geochemist, Grice (see profile, p12) studies molecular fossils in rock sediments from 2.3 billion years ago through to the present day, also known as biomarkers. These contain carbon, oxygen, hydrogen, nitrogen, or sulphur – unlike the rocks, minerals and trace elements studied by inorganic geochemists Wilde and McInnes.

Grice uses tools such as tandem mass spectrometry, which enables the separation and analysis of ratios of naturally occurring stable isotopes to reconstruct ancient environments. For example, carbon has two stable isotopes – carbon-12 and carbon-13 – and one radioactive isotope, carbon-14. The latter is commonly used for dating ancient artefacts based on its rate of decay. A change in carbon-12 to carbon-13 ratios in plant molecules, however – along with a change in hydrogen – can reveal a shift in past photosynthetic activity.

Grice has uncovered the environmental conditions during Earth’s five mass extinction events and has found there were similar conditions in the three biggest extinctions – the end-Permian at 252 million years ago (Ma), end-Triassic at 201 Ma and end-Devonian at 374 Ma. Among other things, there were toxic levels of hydrogen sulphide in the oceans. Grice discovered this by studying molecules from photosynthetic bacteria, which were found to be using toxic hydrogen sulphide instead of water as an electron donor when performing photosynthesis, thereby producing sulphur instead of oxygen.

“The end-Permian and end-Triassic events were almost identical in that they are both associated with massive volcanism, rising sea levels and increased run-off from land, leading to eutrophication,” Grice explains. Eutrophication occurs when introduced nutrients in water cause excessive algal growth, reducing oxygen levels in the environment. “There were no polar ice caps at these times, and the oceans had sluggish circulations,” she adds.

In 2013, Grice co-authored a paper in Nature Scientific Reports documenting that fossils in the Kimberley showed that hydrogen sulphide plays a pivotal role in soft tissue preservation. This modern day insight is valuable for the resources sector because these ancient environments provided the conditions for many major mineral and petroleum systems. “When you have these major extinction events associated with low oxygen allowing the organic matter to be preserved – along with certain temperature and pressure conditions over time – the materials break down to produce oil and gas,” Grice says.

For example, the Permian-Triassic extinction event – during which up to 95% of marine and 70% of terrestrial species disappeared – produced several major petroleum reserves. That includes deposits in Western Australia’s Perth Basin, says Grice, “and probably intervals in the WA North West Shelf yet to be discovered.”

Gemma Chilton

Portrait of an engineer-politician

A passionate engineer, Karen Andrews is proof that studying science, technology, engineering and maths (STEM) can propel you along an exciting and varied career path.

This path has led to her current role as Assistant Minister for Science and Federal Member for McPherson in Queensland. The engineer in her, however, is omnipresent.

“I’m delighted that my role in politics takes me right into the engineering sphere,” Karen says. “I always enjoyed being an engineer, and quite frankly if I get the opportunity to introduce myself as an engineer or a politician, I will always go for engineer.”

Karen’s interest in engineering started early. “When I was eight years old I remember being absolutely fascinated by the washing machine,” says Karen, recounting a childhood memory, “and how the agitator turned the same amount in a clockwise and anti-clockwise direction every time.”

This curiosity of how things work drove Karen to study engineering at Queensland University of Technology (QUT), where, in 1983, she and a fellow student were the first two female graduates in mechanical engineering from the university.

Karen Andrews
Karen Andrews, Assistant Minister for Science

According to Graduate Careers Australia, with women representing less than 9% of bachelor degree graduates in mechanical engineering in 2014, and the gender imbalance increasing as female participation in STEM wanes, there is still a dearth of women entering STEM.

As a trailblazer for women in engineering, Karen believes barriers to women entering STEM can be overcome.

“Some of the limitations are self-imposed,” Karen believes. “We should be making sure that as girls are going through the education system, they understand that every career choice is open to them. And with careers advisors too, we have to make sure there isn’t an unintentional gender bias in the advice that’s being given to women.”

After graduating, Karen cut her teeth working at power stations and petrochemical sites across Queensland and interstate. This was the mid-1980s, a time of significant industrial volatility in the Australian oil industry.

Karen’s supervisory role often meant receiving delegations from shop stewards; individuals elected by workers to represent them in dealings with management. “Shop stewards were pointing out to me the reasons why they couldn’t do the things I was asking them to do,” says Karen, as she described some of her early experiences in this demanding environment. “This encouraged me to go off and study industrial relations (IR). I was attracted to IR to see how I could make things better at the work place.”

As a natural communicator, Karen pursued her interests in IR joining the Chamber of Manufacturers as an industrial advocate in the Metals, Engineering and Construction industry.

“If you’re going to communicate, first and foremost you have to be a good listener,” explains Karen. “You have to listen to what people are saying to you in the first place before you can respond and work through a solution.”

With Karen’s communication skills honed in IR, and refined while running her own Human Resources and IR consultancy, Karen decided to pursue a long-held interest in politics. And with characteristic drive and determination she was elected for the seat of McPherson, southern Gold Coast in 2009.

“The adversarial parts of IR are similar to the adversarial parts of politics, says Karen. “In IR you are working closely with employers and employees trying to achieve an outcome that’s in the best interests of that business. The same thing applies in politics, but on a larger scale because you’re looking at what is in the best interests of Australia.”

Karen’s engineering background and career path afford her a unique perspective on the potential future for STEM in Australia.

“I think there will be exciting new careers in analysing big data,” says Karen. “So we’ll need people who are going to be able to analyse that data and turn it into usable information. So I think there will be plenty of opportunities for data analysts and people with higher maths skills.”

“There will also be lots of opportunities in the coming years in astronomy, and particularly is marine sciences where we are already world-leaders,” says Karen.

– Carl Williams

Fuelling the future

The complex engineering that drives renewable energy innovation, global satellite navigation, and the emerging science of industrial ecology is among Curtin University’s acknowledged strengths. Advanced engineering is crucial to meeting the challenges of climate change and sustainability. Curtin is addressing these issues in several key research centres.

Bioenergy, fuel cells and large energy storage systems are a focus for the university’s Fuels and Energy Technology Institute (FETI), launched in February 2012. The institute brings together a network of more than 50 researchers across Australia, China, Japan, Korea, Denmark and the USA, and has an array of advanced engineering facilities and analytic instruments. It also hosts the Australia-China Joint Research Centre for Energy, established in 2013 to address energy security and emissions reduction targets for both countries. 

Curtin’s Sustainable Engineering Group (SEG) has been a global pioneer in industrial ecology, an emerging science which tracks the flow of resources and energy in industrial areas, measures their impact on the environment and works out ways to create a “circular economy” to reduce carbon emissions and toxic waste.

And in renewable energy research, Curtin is developing new materials for high temperature fuel cell membranes, and is working with an award-winning bioenergy technology that will use agricultural crop waste to produce biofuels and generate electricity.


Solar’s big shot

Curtin’s hydrogen storage scientists are involved in one of the world’s biggest research programs to drive down the cost of solar power and make it competitive with other forms of electricity generation such as coal and gas. They are contributing to the United States SunShot Initiative – a US$2 billion R&D effort jointly funded by the US Department of Energy and private industry partners to fast track technologies that will cut the cost of solar power, including manufacturing for solar infrastructure and components.

SunShot was launched in 2011 as a key component of President Obama’s Climate Action Plan, which aims to double the amount of renewable energy available through the grid and reduce the cost of large-scale solar electricity by 75%.

Professor Craig Buckley, Dean of Research and Professor of Physics at Curtin’s Faculty of Science and Engineering, is the lead investigator on an Australian Research Council Linkage Project on energy storage for Concentrating Solar Power (CSP), and a chief investigator with the SunShot CSP program. His team at Curtin’s Hydrogen Storage Research Group is using metal hydrides to develop a low cost hydrogen storage technology for CSP thermal energy plants such as solar power towers.

CSP systems store energy in a material called molten salts – a mixture of sodium nitrate and potassium nitrate, which are common ingredients in plant fertilisers. These salts are heated to 565°C, pumped into an insulated storage tank and used to produce steam to power a turbine to generate electricity. But it’s an expensive process. The 195 m tall Crescent Dunes solar power tower in Nevada – one of the world’s largest and most advanced solar thermal plants – uses 32,000 tonnes of molten salt to extend operating hours by storing thermal energy for 10 hours after sunset.

Metal hydrides – compounds formed by bonding hydrogen with a material such as calcium, magnesium or sodium – could replace molten salts and greatly reduce the costs of building and operating solar thermal power plants. Certain hydrides operate at higher temperatures and require smaller storage tanks than molten salts. They can also be reused for up to 25 years.

At the Nevada plant, molten salt storage costs an estimated $150 million, – around 10–15% of operation costs, says Buckley. “With metal hydrides replacing molten salts, we think we can reduce that to around $50–$60 million, resulting in significantly lower operation costs for solar thermal plants,” he says. “We already have a patent on one process, so we’re in the final stages of testing the properties of the process for future scale-up. We are confident that metal hydrides will replace molten salts as the next generation thermal storage system for CSP.”


From biomass to fuel

John Curtin Distinguished Professor Chun-Zhu Li is lead researcher on a FETI project that was awarded a grant of $5.2 million by the Australian Renewable Energy Agency in 2015 to build a pilot plant to test and commercialise a new biofuel technology. The plant will produce energy from agricultural waste such as wheat straw and mallee eucalypts from wheatbelt farm forestry plantations in Western Australia.

“These bioenergy technologies will have great social, economic and environmental benefits,” says Li. “It will contribute to the electricity supply mix and also realise the commercial value of mallee plantations for wheatbelt farmers. It will make those plantations an economically viable way of combating the huge environmental problem of dryland salinity in WA.”

Li estimates that WA’s farms produce several million tonnes of wheat straw per year, which is discarded as agricultural waste. Biomass gasification is a thermochemical process converting biomass feedstock into synthesis gas (syngas) to generate electricity using gas engines or other devices.

One of the innovations of the biomass gasification technology developed at FETI is the destruction of tar by char or char-supported catalysts produced from the biomass itself. Other biomass gasification systems need water-scrubbing to remove tar, which also generates a liquid waste stream requiring expensive treatment, but the technology developed by Li’s team removes the tar without the generation of any wastes requiring disposal. This reduces construction and operation costs and makes it an ideal system for small-scale power generation plants in rural and remote areas.

Li’s team is also developing a novel technology to convert the same type of biomass into liquid fuels and biochar. The combined benefits of these bioenergy/biofuel technologies could double the current economic GDP of WA’s agricultural regions, Li adds. future scale-up. We are confident that metal hydrides will replace molten salts as the next generation thermal storage system for CSP.”


Keeping renewables on grid

Professor Syed Islam is a John Curtin Distinguished Professor with Curtin’s School of Electrical Engineering and Computing. It’s the highest honour awarded by the university to its academic staff and recognises outstanding contributions to research and the wider community. Islam has published widely on grid integration of renewable energy sources and grid connection challenges. In 2011, he was awarded the John Madsen Medal by Engineers Australia for his research to improve the prospect of wind energy generation developing grid code enabled power conditioning techniques.

Islam explains that all power generators connected to an electricity network must comply with strict grid codes for the network to operate safely and efficiently. “The Australian Grid Code specifically states that wind turbines must be capable of uninterrupted operation, and if electrical faults are not immediately overridden, the turbines will be disconnected from the grid,” he says.

“Wind energy is a very cost effective renewable technology. But disturbances and interruptions to power generation mean that often wind farms fall below grid code requirements, even when the best wind energy conversion technology is being used.”

Islam has led research to develop a system that allows a faster response by wind farm voltage control technologies to electrical faults and voltage surges. It has helped wind turbine manufacturers meet grid regulations, and will also help Australia meet its target to source 20% of electricity from renewable energy by 2020.

Islam says micro-grid technology will also provide next-generation manufacturing opportunities for businesses in Australia. “There will be new jobs in battery technology, in building and operating micro-grids and in engineering generally,” he says.

“By replacing the need for platinum catalysts, we can make fuel cells much cheaper and more efficient, and reduce dependence on environmentally damaging fossil fuels.”


Cutting fuel cell costs

Professor San Ping Jiang from FETI and his co-researcher Professor Roland De Marco at University of the Sunshine Coast in Queensland recently received an Australian Research Council grant of $375,000 to develop a new proton exchange membrane that can operate in high-temperature fuel cells. It’s a materials engineering breakthrough that will cut the production costs of fuel cells, and allow more sustainable and less polluting fuels such as ethanol to be used in fuel cells.

Jiang, who is based at Curtin’s School of Chemical and Petroleum Engineering, has developed a silica membrane that can potentially operate at temperatures of up to 500°C. Fuel cells directly convert chemical energy of fuels suchas hydrogen, methanol and ethanol into electricity and provide a lightweight alternative to batteries, but they are currently limited in their application because conventional polymer-based proton exchange membranes perform most efficiently at temperatures below 80°C. Jiang has developed a membrane that can operate at 500°C using heteropoly acid functionalised mesoporous silica – a composite that combines high proton conductivity and high structural stability to conduct protons in fuel cells. His innovation also minimises the use of precious metal catalysts such as platinum in fuel cells, reducing the cost.

“The cost of platinum is a major barrier to the wider application of fuel cell technologies,” Jiang says. “We think we can reduce the cost significantly, possibly by up to 90%, by replacing the need for platinum catalysts. It will make fuel cells much cheaper and more efficient, and reduce dependence on environmentally damaging fossil fuels.”

He says the high temperature proton exchange membrane fuel cells can be used in devices such as smartphones and computers, and in cars, mining equipment and communications in remote areas.


Doing more with less

The SEG at Curtin University has been involved in energy efficiency and industrial analysis for just over 15 years. It’s been a global leader in an emerging area of sustainability assessment known as industrial ecology, which looks at industrial areas as ‘ecosystems’ that can develop productive exchanges of resources.

Associate Professor Michele Rosano is SEG’s Director and a resource economist who has written extensively on sustainability metrics, charting the life cycles of industrial components, carbon emission reduction and industrial waste management. They’re part of a process known as industrial symbiosis – the development of a system for neighbouring industries to share resources, energies and by-products. “It’s all about designing better industrial systems, and doing more with less,” Rosano says.

Curtin and SEG have been involved in research supported by the Australian’s Government’s Cooperative Research Centres Program to develop sustainable technologies and systems for the mineral processing industry at the Kwinana Industrial Area, an 8 km coastal industrial strip about 40 km south of Perth. The biggest concentration of heavy industries in Western Australia, Kwinana includes oil, alumina and nickel refineries, cement manufacturing, chemical and fertiliser plants, water treatment utilities and a power station that uses coal, oil and natural gas.

Rosano says two decades of research undertaken by Curtin at Kwinana is now recognised as one of the world’s largest and most successful industrial ecology projects. It has created 49 industrial symbiosis projects, ranging from shared use of energy and water to recovery and reuse of previously discarded by-products.

“These are huge and complex projects which have produced substantial environmental and economic benefits,” she says. “Kwinana is now seen as a global benchmark for the way in which industries can work together to reduce their footprint.”

An example of industrial synergies is waste hydrochloric acid from minerals processing being reprocessed by a neighbouring chemical plant for reuse in rutile quartz processing. The industrial ecology researchers looked at ways to reuse a stockpile of more than 1.3 million tonnes of gypsum, which is a waste product from the manufacture of phosphate fertiliser and livestock feeds. The gypsum waste is used by Alcoa’s alumina refinery at Kwinana to improve soil stability and plant growth in its residue areas.

The BP oil refinery at Kwinana also provides hydrogen to fuel Perth’s hydrogen fuel-cell buses. The hydrogen is produced by BP as a by-product from its oil refinery and is piped to an industrial gas facility that separates, cleans and pressurises it. The hydrogen is then trucked to the bus depot’s refuelling station in Perth.

Rosano says 21st century industries “are serious about sustainability” because of looming future shortages of many raw materials, and also because research has demonstrated there are social, economic and environmental benefits to reducing greenhouse emissions.

“There is a critical need for industrial ecology, and that’s why we choose to focus on it,” she says. “It’s critical research that will be needed to save and protect many areas of the global economy in future decades.”


in text

Planning for the future

Research by Professor Peter Teunissen and Dr Dennis Odijk at Curtin’s Department of Spatial Sciences was the first study in Australia to integrate next generation satellite navigation systems with the commonly used and well-established Global Positioning System (GPS) launched by the United States in the 1990s.

Odijk says a number of new systems are being developed in China, Russia, Europe, Japan, and India, and it’s essential they can interact successfully. These new Global Navigation Satellite Systems (GNSS) will improve the accuracy and availability of location data, which will in turn improve land surveying for locating mining operations and renewable energy plants.

“The new systems have an extended operational range, higher power and better modulation. They are more robust and better able to deal with challenging situations like providing real-time data to respond to bushfires and other emergencies,” says Odijk.

“When these GNSS systems begin operating over the next couple of years, they will use a more diverse system of satellites than the traditional GPS system. The challenge will be to ensure all these systems can link together.”

Integrating these systems will increase the availability of data, “particularly when the signals from one system might be blocked in places like open-pit mines or urban canyons – narrow city streets with high buildings on both sides.”

Teunissen and Odijk’s research on integrating the GNSS involves dealing with the complex challenges of comparing estimated positions from various satellites, as well as inter-system biases, and developing algorithms. The project is funded by the Cooperative Research Centre for Spatial Information, and includes China’s BeiDou Navigation Satellite System, which is now operating across the Asia-Pacific region.

Rosslyn Beeby

The role of science and innovation in a 21st century government

Australia’s new prime minister, Malcolm Turnbull, has announced what he calls a “21st-century government”. This article is part of The Conversation’s series focusing on what such a government should look like.

Change is in the air. According to our new Prime Minister Malcolm Turnbull, his will be a 21st century government. But what does this entail? And what is the role of science and innovation in such a government?

The challenge for a genuinely 21st century Australian government is how to wrap its arms around the future in such a way that it improves Australia’s ability to capitalise on its research capacity and create new jobs, industries and opportunities for the coming century.


A 21st century ministry

The expanded Industry, Innovation and Science portfolio will now encompass digital technology and engineering, which together comprise the engine that has driven explosive growth in Silicon Valley, Israel and other forward-looking places.

We need to invest broadly in science research to feed the technology and engineering engine. But how do we bridge the funding “valley of death” between research and industry, and convert our excellent research outcomes into proven technologies?

We have companies aplenty that can pick up and commercialise proven technologies, but they are rightly cautious about licensing the rights to research outcomes. To address this problem, the US government directly invests nearly ten times more than we do as a percentage of GDP to fund business feasibility studies intended to convert research outcomes into proven technologies.

To drive our innovation agenda harder, a 21st century government could consider grants and development contracts specifically to support the translation of research outcomes into proven technologies.

Private sector investment into Australian start-up companies is lacking. In the US and Israel, more than 10% of GDP derives from venture-capital backed companies. In Australia it is 0.2%.

If we could increase the contribution to the economy by these companies from 0.2% to, say, 2%, then the benefits would be significant. To do so we will need to encourage new domestic and international sources of private funding, teach skills in technology assessment, and give further consideration to the rules around employee stock options and crowd-sourced funding.


Thinking big

At the same time, the fresh line-up of political leaders can help advance the national psyche beyond a state of gloom. They can acknowledge the fantastic benefits innovation has already brought to established industries.

Banking and resources, for example, have invested heavily in innovation to improve efficiency, and the largest iron mining companies in Australia continue to operate with positive operating margins despite depressed international prices.

Science and technology advances operate across broad sectors of the economy, contributing to accelerated growth in major export industries such as agriculture. Improvements to farm machinery and practices will make our farming more efficient, while adoption of digital technology to track our goods from field to retail outlet will provide the proof of origin that will allow our exporters to charge premium prices.

To the extent that the government will invest in new programs to support innovation, they should be carefully conceived, long term and national in scope, and large in scale. At the same time, existing programs could be consolidated to focus on those that have the most impact.


Sink or swim

I sometimes hear criticism of the Australian workforce, but I strongly disagree with that criticism. I have employed many engineers and scientists in the US and in Australia, and the Australian staff have been every bit as talented and dedicated as their US counterparts.

Unfortunately, unlike in the US, a substantial fraction of our creative workforce is locked out of commercial development activities because of the lack of mobility between university and industry jobs.

A 21st century government could help by adopting ratings systems that measure and reward engagement between universities and industry, and value time spent by research staff working in industry as much as they value publications and citations.

Of course, like footballers, innovators thrive when the rules of the game are clear and consistently applied. Industry is as one with government in recognising the importance of strong regulations. What is needed in most industries is a lead regulator to coordinate the regulatory oversight.

This approach does not replace the expertise of the various regulators, it just coordinates them. The key is for regulations to enable rather than stifle innovation while ensuring that community concerns and safety requirements are properly addressed.

We are already operating in an era of digital disruption. Science and technology will further dominate our future as we build a world ever more like those imagined by science fiction. In this world, machines offer their services to each other, buy and sell products and exchange information in real time. Manufacturing and service provision will be highly flexible and products will be individualised to customer needs.

Our industries must be agile and ready to transform, so that they will add value in a complex global supply chain, thereby creating new wealth that will be invested in services, health and other industries, with net creation of jobs.

The only thing we know for sure is that the next ten years will change more rapidly than the past ten years. I am confident that as the newly appointed Minister for Industry, Innovation and Science, Christopher Pyne, recognises the urgency to embrace these changes and will introduce policies and practices to capture the opportunities in what is proving to be a sink or swim world. The latter is preferable.

– , Chancellor, Monash University

This article was first published by The Conversation US on 27 September 2015. Read the original article here.

Celebrating Australian succcess

Success lay with the University of Melbourne, which won Best Commercial Deal for the largest biotech start-up in 2014; the Melbourne office of the Defence Science and Technology Group, which won Best Creative Engagement Strategy for its ‘reducing red tape’ framework; and Swinburne University for the People’s Choice Award.

“These awards recognise research organisations’ success in creatively transferring knowledge and research outcomes into the broader community,” said KCA Executive Officer, Melissa Geue.

“They also help raise the profile of research organisations’ contribution to the development of new products and services which benefit wider society and sometimes even enable companies to grow new industries in Australia.”

Details of the winners are as follows:

The Best Commercial deal is for any form of commercialisation in its approach, provides value-add to the research institution and has significant long term social and economic impact:

University of Melbourne – Largest bio tech start-up for 2014

This was for Australia’s largest biotechnology deal in 2014 which was Shire Plc’s purchase of Fibrotech Therapeutics P/L – a University of Melbourne start-up – for US$75 million upfront and up to US$472m in following payments. Fibrotech develops novel drugs to treat scarring prevalent in chronic conditions like diabetic kidney disease and chronic kidney disease. This is based on research by Professor Darren Kelly (Department of Medicine St. Vincent’s Hospital).

Shire are progressing Fibrotech’s lead technology through to clinical stages for Focal segmental glomerulosclerosis, which is known to affect children and teenagers with kidney disease. The original Fibrotech team continues to develop the unlicensed IP for eye indications in a new start-up OccuRx P/L.

Best Creative Engagement Strategy showcases some of the creative strategies research organisations are using to engage with industry partner/s to share and create new knowledge:

Defence Science and Technology Group –Defence Science Partnerships (DSP) reducing red tape with a standardised framework

The DSP has reduced transaction times from months to weeks with over 300 agreements signed totalling over $16m in 2014-15. The DSP is a partnering framework between the Defence Science Technology Group of the Department of Defence and more than 65% of Australian universities. The framework includes standard agreement templates for collaborative research, sharing of infrastructure, scholarships and staff exchanges, simplified Intellectual Property regimes and a common framework for costing research. The DSP was developed with the university sector in a novel collaborative consultative approach.

The People’s Choice Awards is open to the wider public to vote on which commercial deal or creative engagement strategy project deserves to win. The winner this year, who also nabbed last years’ award is:

Swinburne University of Technology – Optical data storage breakthrough leads the way to next generation DVD technology – see DVDs are the new cool tech

Using nanotechnology, Swinburne Laureate Fellowship project researchers Professor Min Gu, Dr Xiangping Li and Dr Yaoyu Cao achieved a breakthrough in data storage technology and increased the capacity of a DVD from a measly 4.7 GB to 1,000 TB. This discovery established the cornerstone of a patent pending technique providing solutions to the big data era. In 2014, start-up company, Optical Archive Inc. licensed this technology. In May 2015, Sony Corporation of America purchased the start-up, with knowledge of them not having any public customers or a final product in the market. This achievement was due to the people, the current state of development and the intellectual property within the company.

This article was shared by Knowledge Commercialisation Australia on 11 September 2015. 

New biosecurity centre to stop fruit flies

Upgraded bio-security measures to combat fruit fly will be introduced in Australia, bringing added confidence to international trade markets.

South Australia is the only mainland state in Australia that is free from fruit flies – a critical component of the horticultural industries’ successful and expanding international export market.

A new national Sterile Insect Technology facility in Port Augusta, located in the north of South Australia, will produce billions of sterile male fruit flies – at the rate of 50 million a week – to help prevent the threat of fruit fly invading the state.

The new measures will help secure producers’ access to important citrus and almond export markets including the United States, New Zealand and Japan, worth more than $800 million this year.

The Sterile Insect Technique (SIT) introduces sterile flies into the environment that then mate with the wild population, ensuring offspring are not produced.

Macquarie University Associate Professor Phil Taylor says the fly, know as Qfly because they come from Queensland, presents the most difficult and costly biosecurity challenge to market access for most Australian fruit producers.

“Fruit flies, especially the Queensland fruity fly, present a truly monumental challenge to horticultural production in Australia,” he says.

“For generations, Australia has relied on synthetic insecticides to protect crops, but these are now banned for many uses. Environmentally benign alternatives are needed urgently – this is our goal.

The impetus behind this initiative is to secure and improve trade access both internationally and nationally for South Australia.

It will increase the confidence of overseas buyers in the Australian product and make Australia a more reliable supplier. Uncertainty or variation of quality of produce would obviously be a concern for our trading partners.”

South Australia’s Agriculture Minister Leon Bignell says the $3.8 million centre would produce up to 50 million sterile male Qflies each week.

“The State Government has invested $3 million and Horticulture Innovation Australia Ltd (HIA) has contributed $800,000 in this project and construction is expected to take 10 months,” Bignell says.

“While fruit fly is a major problem with horticultural crops in Australia’s other mainland states, South Australia remains fruit fly free, but we are still at risk of outbreak.”

“Producing male-only sterile Qflies has never been done before on this scale and this facility will have an enormous impact on the way in which we deal with outbreaks.”

Fruit fly management protects the commercial production of fruit and vegetables, including wine grapes and almonds, with an estimated farm-gate value of $851 million.

South Australia is also the only mainland state which has a moratorium on growing GM food crops and is one of the few places in the world free of the vine-destroying pest phylloxera.

“Because of these attributes, South Australian products stand out in the competitive global market, which is increasingly seeking clean and safe food and wine,” Bignell says.

The research partner consortium, SITplus, intends to invest about $50 million during the next five years to support the national fruit fly management program.

The consortium is a research group with experts from Macquarie University, Primary Industries and Regions SA’s Biosecurity SA and South Australian Research and Development Institute divisions, HIA, the CSIRO Health and Biosecurity Flagship, Plant & Food Research Australia, and the NSW Department of Primary Industries.

– John Merriman

This article was first published by The Lead South Australia on 2 September 2015. Read the original article here.

Work on barren soil may bear fruit

Australian and Chinese scientists have made significant progress in determining what causes soil acidification – a discovery that could assist in turning back the clock on degraded croplands.

James Cook University’s Associate Professor Paul Nelson says the Chinese Academy of Sciences sought out the Australian researchers because of work they had done in Australia and Papua New Guinea on the relationship between soil pH levels and the management practices that cause acidification.

Professor Paul Nelson at work.
Professor Paul Nelson at work.

Building on the JCU work, scientists examined a massive 3600 km transect of land in China, stretching from the country’s sub-arctic north to its central deserts. The work yielded a new advance that describes the mechanisms involved in soils becoming acidified.

Nelson says soil degradation is a critical problem confronting humanity, particularly in parts of the world such as the tropics where land use pressure is increasing and the climate is changing. “We can now quantify the effect of, for instance, shutting down a factory that contributes to the production of acid rain,” he says.

Nelson says the research found different drivers of soil acidification processes in different types of soil across northern China. “This information is vital for designing strategies that prevent or reverse soil acidification and to help land managers tailor their practices to maintain or improve soil quality,” he says.

The Patron of Soil Science Australia, former Australian Ambassador to the United Nations and for the Environment, The Honourable Penny Wensley AC, welcomed news of the advance.

“With 2015 designated by the United Nations as the International Year of Soils, this is a very important year for soil scientists around the world. We need to promote greater awareness of the importance of soils and soil health and the role soil science has to play in addressing national and global challenges.”

In the context of the International Year of Soils, Wensley says: “We want to encourage greater cooperation and exchanges between soil scientists, to accelerate progress in research and achieve outcomes that will deliver practical benefits to farmers and land managers, working in diverse environments.

“This research project, drawing on the shared expertise of soil scientists from Australia’s James Cook University and the Chinese Academy of Sciences, is an exciting illustration of what can be achieved through greater collaboration,” she says.

Acidification is one of the main soil degradation issues worldwide, accelerated by water leaching through the soil. It is related mostly to climate, and the overuse of nitrogen-based fertiliser.

“The greater understanding of soil acidification causes this study has delivered could help improve soil management practices, not only in Australia and China, but around the world,” says Wensley.

The study has been published in the journal, Biogeosciences.

This article was first published by James Cook University on 19 August 2015. Read the original article here.

From science fiction to reality: the dawn of the biofabricator

 

“We can rebuild him. We have the technology.”
– The Six Million Dollar Man, 1973

Science is catching up to science fiction. Last year a paralysed man walked again after cell treatment bridged a gap in his spinal cord. Dozens of people have had bionic eyes implanted, and it may also be possible to augment them to see into the infra-red or ultra-violet. Amputees can control bionic limb implant with thoughts alone.

Meanwhile, we are well on the road to printing body parts.

We are witnessing a reshaping of the clinical landscape wrought by the tools of technology. The transition is giving rise to a new breed of engineer, one trained to bridge the gap between engineering on one side and biology on the other.

Enter the “biofabricator”. This is a role that melds technical skills in materials, mechatronics and biology with the clinical sciences.


21st century career

If you need a new body part, it’s the role of the biofabricator to build it for you. The concepts are new, the technology is groundbreaking. And the job description? It’s still being written.

It is a vocation that’s already taking off in the US though. In 2012, Forbes rated biomedical engineering (equivalent to biofabricator) number one on its list of the 15 most valuable college majors. The following year, CNN and payscale.com called it the “best job in America”.

These conclusions were based on things like salary, job satisfaction and job prospects, with the US Bureau of Labour Statistics projecting a massive growth in the number of biomedical engineering jobs over the next ten years.

Meanwhile, Australia is blazing its own trail. As the birthplace of the multi-channel Cochlear implant, Australia already boasts a worldwide reputation in biomedical implants. Recent clinical breakthroughs with an implanted titanium heel and jawbone reinforce Australia’s status as a leader in the field.

The Cochlear implant has brought hearing to many people. Dick Sijtsma/Flickr, CC BY-NC
The Cochlear implant has brought hearing to many people. Dick Sijtsma/Flickr, CC BY-NC

I’ve recently helped establish the world’s first international Masters courses for biofabrication, ready to arm the next generation of biofabricators with the diverse array of skills needed to 3D print parts for bodies.

These skills go beyond the technical; the job also requires the ability to communicate with regulators and work alongside clinicians. The emerging industry is challenging existing business models.


Life as a biofabricator

Day to day, the biofabricator is a vital cog in the research machine. They work with clinicians to create a solution to clinical needs, and with biologists, materials and mechatronic engineers to deliver them.

Biofabricators are naturally versatile. They are able to discuss clinical needs pre-dawn, device physics with an electrical engineer in the morning, stem cell differentiation with a biologist in the afternoon and a potential financier in the evening. Not to mention remaining conscious of regulatory matters and social engagement.

Our research at the ARC Centre of Excellence for Electromaterials Science (ACES) is only made possible through the work of a talented team of biofabricators. They help with the conduits we are building to regrow severed nerves, to the electrical implant designed to sense an imminent epileptic seizure and stop it before it occurs, to the 3D printed cartilage and bone implants fashioned to be a perfect fit at the site of injury.

As the interdisciplinary network takes shape, we see more applications every week. Researchers have only scratched the surface of what is possible for wearable or implanted sensors to keep tabs on an outpatient’s vitals and beam them back to the doctor.

Meanwhile, stem cell technology is developing rapidly. Developing the cells into tissues and organs will require prearrangement of cells in appropriate 3D environments and custom designed bioreactors mimicking the dynamic environment inside the body.

Imagine the ability to arrange stem cells in 3D surrounded by other supporting cells and with growth factors distributed with exquisite precision throughout the structure, and to systematically probe the effect of those arrangements on biological processes. Well, it can already be done.

Those versed in 3D bioprinting will enable these fundamental explorations.


Future visions

Besides academic research, biofabricators will also be invaluable to medical device companies in designing new products and treatments. Those engineers with an entrepreneurial spark will look to start spin-out companies of their own. The more traditional manufacturing business model will not cut it.

As 3D printing evolves, it is becoming obvious that we will require dedicated printing systems for particular clinical applications. The printer in the surgery for cartilage regeneration will be specifically engineered for the task at hand, with only critical variables built into a robust and reliable machine.

The 1970s TV show, Six Million Dollar Man, excited imaginations, but science is rapidly catching up to science fiction. Joe Haupt/Flickr, CC BY-SA
The 1970s TV show, Six Million Dollar Man, excited imaginations, but science is rapidly catching up to science fiction. Joe Haupt/Flickr, CC BY-SA

Appropriately trained individuals will also find roles in the public service, ideally in regulatory bodies or community engagement.

For this job of tomorrow, we must train today and new opportunities are emerging biofab-masters-degree. We must cut across the traditional academic boundaries that slow down such advances. We must engage with the community of traditional manufacturers that have skills that can be built upon for next generation industries.

Australia is also well placed to capitalise on these emerging industries. We have a traditional manufacturing sector that is currently in flux, an extensive advanced materials knowledge base built over decades, a dynamic additive fabrication skills base and a growing alternative business model environment.

– Gordon Wallace & Cathal D. O’Connell

This article was first published by The Conversation on 31 August 2015. Read the original article here.

Making mineral exploration easy

LANDTEM, an Australian invention that creates a 3D map of underground ore bodies has uncovered deposits worth A$4 billion in Australia and A$10 billion globally. The technology development was led by CSIRO scientist Dr Cathy Foley and is a great example of the commercial application of scientific research.

In some ways it was a stroke of good fortune that set Dr Cathy Foley and her colleagues on the path to inventing LANDTEM, a device that has revolutionised the way mining companies detect ore underground and uncovered deposits worth billions of dollars around the world.

The invention won Foley, the deputy director and science director of manufacturing in Australia’s national science agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the prestigious Clunies Ross award for innovation and commercialisation.

Dr Cathy Foley
Dr Cathy Foley

The story of the invention begins in the mid-1980s, when the discovery of high temperature superconductors opened the way for superconductivity to be used in everyday applications instead of only at extremely low temperatures.

The discovery provoked huge excitement around the world among scientists and engineers who set about seeking practical applications, no less so in Australia.


The CSIRO pulled together a team to collaborate on potential applications with industry: with Amalgamated Wireless Australasia (AWA) on electronics and communications; Nucleus Network and now Cochlear on medical devices; and BHP Billiton on improving the quality of steel fabrication by measuring extremely subtle magnetic fields.

BHP Billiton held an internal meeting about the technology and it was there that some of the company’s geologists said that measuring subtle magnetic fields would be very valuable to them, providing the spark of the idea for LANDTEM.

Foley describes the moment as “serendipitous”, but says it’s also a reflection of the way CSIRO interacts with industry.

“Quite often when you’ve got something which is a platform technology that can be used in a lot of different ways, you start off thinking in a very diverse way or very open ended way so you’re not really sure where you’re going. And that’s why one of the things that differentiates the CSIRO from any other research organisations and particularly universities: we talk to industry a lot and get guidance from them,” she says.

“We might come up with the original science but then we engage with industry to say, ‘we’ve got this great idea, we think it could be useful there’. And they’ll say, ‘well, actually no, we think it could be useful over here’.”


LANDTEM consists of a big coil of wire placed on the ground above a potential ore deposit. It pulses a large changing current through the wire to create a magnetic field, and this in turn creates what’s known as an Eddy current in any conducting material nearby, such as an ore body underground.

intext2

Then the current is turned off, but an ore body’s current lingers for a tiny fraction of a second longer and by measuring this, LANDTEM can determine if there is an ore body and where it is. Crucially, it  can discriminate between an actual ore body and the conducting soil that is so prevalent in Australia and that in the past would have led to muddled results.
Foley says the invention has helped mining companies find things they wouldn’t have found otherwise and find deeper ore bodies. It can also tell them whether it is worth the expense of putting a bore hole down to analyse the quality of the ore and where to put it.

Not all ore bodies are conducting, so LANDTEM is mainly used for finding silver, nickel and gold.

It’s one of a series of tools geologists use to find an ore body, and Foley says it has allowed many mining companies to cut out several of the steps needed in mineral exploration.

For instance, in Canada, Xstrata Nickel has bought three LANDTEM systems and is so confident about the technology that once it has located an ore body they don’t do much drilling at all and move straight on to mining instead.

When recognising the work of Foley and her colleague CSIRO engineer Keith Leslie at the Clunies Ross awards, the chair of the awards’ organising committee Professor Mike Hood said: “Their story demonstrates the importance of unwavering dedication in bringing a scientific discovery to market. Over the coming years LANDTEM will continue to play a major role in the worldwide discovery of new mineral deposits.”


Foley studied physics and education at Sydney’s Macquarie University with the intention of becoming a high school science teacher. “But I fell in love with research and I did my PhD in nitride semiconductors and did a smidgen of the early work that led to the white LED,” she says.

Having decided to pursue a career in research, Foley joined CSIRO as a post-doctoral fellow working in magnetics and was asked to join the team working on applications for the new high temperature superconductors.

Along with taking the new technology to industry to see how it could be used, another factor in the successful development and commercialisation of the LANDTEM is CSIRO’s ability to pull together a multidisciplinary team when an opportunity arises, in this case researchers in mineral resources, electrical engineering, devices, materials and cryogenics, and finally at the end, lawyers and business people.

“In order to be a survivor and also to really be profitable and commercially successful, you’ve got to recognise just how the world is changing and that you’ve got to be innovative, not just in your products but also in your business model and how you see yourself getting into the manufacturing world,” she says.

“Australia is at a really interesting point where the current Government has recognised this and I think got a whole lot of things in place.”


Foley says the Federal Government’s recently-announced Industry Growth Centres, which aim to forge better links between industry and Australia’s top researchers, are a promising start.

She sees potential in agile manufacturing, where the manufacturers make small numbers of specialised and customised products and can quickly re-conform to make another product.

“Instead of being a manufacturer who has a big factory, you actually buy time in a factory to do a certain thing, part of it, and then you might even ship it to somewhere else to get another bit done where there’s a specialist and so you end up with products which are done more in smaller batches rather than mass market because they’re more customised,” she says. “These days successful societies have to keep reinventing themselves and recognising where you can you use intellectual approaches rather than just brute labour.”

As a senior CSIRO executive, Foley is less involved in hands-on research than she used to be, but still finds it an exciting environment.

“It’s pretty exciting to think that the work you do actually has an enormous impact and can make a difference. And I think if you ask people I work with, they all say that’s what they love about working at CSIRO. We  do things that actually change the world and I think that’s a nice thing to do,” she says.

– Christopher Niesche

This article was first published by Australia Unlimited on 20 August 2015. Read the original article here.

Design innovations are blowing in the wind

RMIT researchers are using state-of-the-art modelling techniques to study the effects of wind on cities, paving the way for design innovations in building, energy harvesting and drone technology.

The turbulence modelling studies will allow engineers to optimise the shape of buildings, as well as identify areas of rapid airflow within cities that could be used to harvest energy.

Researchers also hope to use the airflow studies to develop more energy efficient drones that use the power of updrafts during flight.

Dr Abdulghani Mohamed, from RMIT’s Unmanned Aircraft Systems research group, said simulations developed by the research team can visualise the shape of updrafts as they developed over buildings and show their variation over time.

“By analysing the interaction of wind with buildings, our research opens new possibilities for improving designs to take better advantage of nature,” he says.

“Buildings can be built to enhance airflow at street level and ventilation, while wind turbines can be precisely positioned in high-speed airflow areas for urban energy harvesting – providing free power for low-energy electronics.

“The airflow simulations will also help us further our work on energy harvesting for micro-sized drones, developing technology that can help them use updrafts to gain height quicker and fly for longer, without using extra energy.”

Scientists and engineers have traditionally relied on building small-scale city replicas and testing them in wind tunnels to make detailed airflow predictions.

This time-consuming and expensive process is being gradually replaced with numerical flow simulations, also known as Computational Fluid Dynamics (CFD).

The researchers – Mohamed, Professor Simon Watkins (RMIT), Dr Robert Carrese (LEAP Australia) and Professor David Fletcher (University of Sydney) – created a CFD model to accurately predict the highly complex and dynamic airflow field around buildings at RMIT’s Bundoora campus west, in Melbourne’s north.

The simulation was validated using a series of full and model-scale experiments, with the results published in the prestigious Journal of Wind Engineering and Industrial Aerodynamics.

The next stage in the research will involve an extensive flight test campaign to further prove the feasibility of the concept of long endurance micro-sized drones, for use in a number of industries including structural monitoring, land surveying, mobile temporary networks and pollution tracking.

This article was first published by RMIT University on 9 August 2015. Read the original article here.

Pig and poultry welfare research receives $1 million grant

A $1 million grant from the South Australian government will go towards expanding the animal welfare research facilities at the University of Adelaide’s Roseworthy campus.

Roseworthy is home to one of Australia’s leading free-range pig and poultry research facilities, as well as the headquarters of the Pork Cooperative Research Centre.

The grant comes during renewed scrutiny in to pig farming practices, including the use of sow stalls or ‘gestation crates’. The practice is being banned in certain states and consumer demand is driving better welfare practices for farmed animals.

The money will be used to develop a remote animal behaviour monitoring system, an improved climate control system, and upgrades of the free-range poultry facility.

Professor Wayne Hein, Dean of Roseworthy campus, welcomed the grant.

“We have an outstanding collaborative hub at Roseworthy with some of the best animal science researchers in the country working at this site,” says Hein.

“Roseworthy is also the headquarters of the Pork Cooperative Research Centre. The strong alignment with the CRC on campus means that industry engagement in the research undertaken on the campus is seamless and beneficial to all parties.

“This funding will help establish the highest standards of animal welfare in animal production systems.”

This article was first published on The Lead on 30 July 2015. Read the original article here.

Growth Centre gets tick of approval

The Minister for Industry and Science, Ian Macfarlane, has approved the Food and Agribusiness Growth Centre which is part of the $225 million Industry Growth Centre Initiative. The Growth Centre headquarters will be located at the CSIRO’s Food Innovation Centre in Werribee, Victoria.

The four main areas the Growth Centre will be focusing on will be reducing regulatory burden, commercialising new products and services, engaging with global markets and supply chains, and improving workforce skills. Food Innovation Australia Ltd (FIAL) will receive $15.4 million from the Australian Government for the first four years of its operation as a Growth Centre, and look to increase this investment from industry and other sources.

The new Growth Centre board met for the first time on 29 June 2015, and various strategic issues relating to the food and agribusiness sector were discussed. Details about the forthcoming sectoral strategy that will be used to align the Growth Centre activities will be shared over the coming year.

This information was shared by the CRC Association Newsletter on 29 July 2015. Read the newsletter here.

New web-based ram selection app wows sheep breeders

The web-based app was launched today by the Cooperative Research Centre for Sheep Industry Innovation (Sheep CRC). The Sheep CRC developed the tool in conjunction with Telstra, Australia’s leading telecommunications provider, and leading software development company Pivotal Labs in San Francisco.

The NSW Department of Primary Industries has also been extensively involved throughout the development of the app, providing expertise from the initial concept to the final product.

During the final test runs before launch, approximately 20 sheep breeders, commercial producers and advisers previewed the system, which they say will dramatically simplify the ranking and purchase of rams, based on Australian Sheep Breeding Values (ASBVs).

Leading farm adviser Craig Wilson, of Craig Wilson & Associates, NSW, says RamSelect.com.au will take the hard work out of using ASBVs when searching for the right genetics to improve flock productivity. “RamSelect.com.au will be a game changer,” Wilson says. “We have known for a long time that ASBVs allow us to compare animals on genetic merit, without the effect of feeding or environment. The RamSelect app makes it quick and easy to rank animals against individual breeding objectives.

“For a lot of commercial producers, sifting through long lists of objective data was time consuming and difficult work – they can now find the genetics they need in a matter of seconds, and know that the recommendations are supported by objective data from Sheep Genetics.”

Sheep CRC chief executive James Rowe said RamSelect.com.au would also be an important marketing tool for breeders assisting clients to select ram teams.

“More and more commercial breeders are demanding objective ASBV data when shopping for rams,” says Rowe. “RamSelect.com.au ensures ram buyers can quickly check rams on offer against their breeding objective and prepare a ranked list prior to sale day. On sale day the buyer only needs to check the visual traits before making their purchase decisions.”

RamSelect.com.au is accessible on a computer, tablet or phone. It will search the Sheep Genetics databases – MERINOSELECT, LAMBPLAN and DOHNE MERINO – to quickly identify and rank rams for a defined breeding objective.

This article was first published on 23 July 2015 by the Sheep CRC. Read the original article here.

Robot automates bacteria screening in wine samples

A robotic liquid handling system at the Australian Wine Research Institute (AWRI) is automating the screening of large numbers of malolactic bacteria strains.

Using miniaturised wine fermentations in 96-well microplates, the Tecan EVO 150 robotic system is screening bacteria for MLF efficiency and response to wine stress factors such as alcohol and low pH.

The bacteria are sourced from the AWRI’s wine microorganism culture collection in South Australia and elsewhere.

The robot can prepare and inoculate multiple combinations of bacteria strains and stress factors in red or white test wine, and then analyse malic acid in thousands of samples over the course of the fermentation.

In one batch, for example, 40 bacteria strains can be screened for MLF efficiency and response to alcohol and pH stress in red wine, with over 6000 individual L-malic acid analyses performed.

The AWRI says that this high-throughput approach provides a quantum leap in screening capabilities compared to conventional MLF testing methods and can be applied to a range of other research applications.

Additionally, the phenotypic data obtained from this research is being further analysed with genomic information, which will identify potential genetic markers for the stress tolerances of malolactic strains.

First published at foodprocessing.com.au on 22 July. Read the original article here.

This article was also published by The Lead on 22 July 2015. Read the article here.