Tag Archives: polymers

Research startups accelerate CSIRO science

Featured image above: Research startups pitch at the ON Accelerate demo night. Hovermap have developed intelligent software that will allow drones to map indoor environments.

There are now over 30 accelerator and incubator programs in Australia, but CSIRO’s ON accelerator is the only one focused on equipping research startups with the tools they need to grow.

“It’s the first time a program of this sort has been offered for the research community on this scale,” says Elizabeth Eastland, the General Manager for Strategy, Market Vision and Innovation at CSIRO.

Just six months ago, Eastland was the Director of the University of Wollongong’s iAccelerate program, but moved to CSIRO having been “blown away by what this program can offer researchers”.

At the ON Accelerate Demo event held on Thursday 7 July, Eastland introduced 11 research startups who pitched their products to Sydney’s venture capital investors. In contrast to the young faces that dominate many of Australia’s accelerators, last night’s ON cohort were led by experienced researchers, engineers, developers and entrepreneurs.

Two of the research startups revealed big plans for the agriculture industry. A group called Future Feed is selling seaweed supplements that aim to reduce livestock greenhouse gas emissions by 80%. Another team has created wireless trapping technology to help farmers detect fruit fly infestations.

Fruit Fly costs farmers US$30 billion in fruit and vegetable production around the world, but this isn’t the only global challenge that the ON research startups have been tackling. The presenter from Modular Photonics pointed out last night that the world’s internet demand is about to outstrip its fibre capacity.

His group is commercialising new photonics hardware compatible with both old internet fibre and the new fibre being developed by the top telecommunications providers.

On the health front, another of the research startups, ePAT unveiled new facial recognition software to detect pain levels in people who cannot speak, such as children and elderly people with moderate to severe dementia. Their vision is that “no patient who cannot speak will suffer in silence in pain”.

ON Accelerate had major success earlier this year when a German company launched a gluten free beer brewed from barley commercialised by a startup from last year’s ON cohort. That startup, known as Kebari, is in now the process of developing another form of gluten free grain for use in food.

Kebari co-founder and scientist Dr Phil Larkin spoke at yesterday’s research startups event, saying ON Accelerate had taught him about ‘flearning’ – learning from failure – and the importance of interrogating the entire delivery chain to validate the value of a solution.

CSIRO Principal Research Scientist and RapidAIM team leader Dr Nancy Shellhorn said that the program had given her much faster access to the market and much better insight into customer needs.

“It’s given me and the RapidAIM team a runway to the science of the future that will be truly impactful,” said Shellhorn.

Program Mentor Martin Duursma also spoke at the research startups event, saying that startup skills are very transferable to research teams because they are all about trying something, gathering feedback, making improvements and repeating the process.

“Startup skills are really just a variant of the scientific method,” said Duursma.

And scientists will have greater access to the ON research startups program next year, with a dramatic increase in the interest of universities. Eastland says that 21 of Australia’s 40 universities have now signed on to be ON partners. Macquarie University and Curtin University led the pack with their involvement this year. UNSW Australia, the University of Technology Sydney and Monash University are among those jumping on board for the next round.

– Elise Roberts


ON Accelerate Research Startups

The below information was first shared by CSIRO. Read the original list and team members here.

1. Hovermap

The future of asset inspection.

“Every year, Australia loses billions of dollars due to infrastructure failures, spends billions of dollars on inspecting its aging assets and loses some of its bravest men and women who take the risk to do this dull and dangerous job. Utility companies and governments are turning to Unmanned Aerial Vehicles (UAVs) to reduce costs and improve safety. However, current UAVs are ‘dumb and blind’ so require expert pilots and can’t fly in many places.

Our solution is an intelligent UAV with advanced collision avoidance, non-GPS flight and accurate 3D mapping capabilities – all tailored to suit industrial inspection requirements. Hovermap is the ultimate inspection tool of the future that can be used to safely and efficiently inspect hard-to-reach assets and collect extremely high fidelity data in previously unreachable places. It is suitable for inspecting telecommunication towers, bridges, power line assets and smoke stacks. This innovative technology will reduce risks, improve safety and efficiency and lower costs, all of which benefit customers and businesses.”

2. Suricle

Changing the face of polymers.

“We change the face of polymers by embedding functional particles into the surface to give them new and useful properties. Our patented technology paves the way for development of many new, innovative materials and products.

An immediate area of application is to protect high-value marine sensors from biofouling. The unwanted growth of marine organisms causes signal attenuation, sensor malfunction, increased weight and unwanted drag due to ocean currents. There are many thousands of marine sensors deployed globally, costing up to $120K each, which require frequent cleaning to keep them in service.

Suricle are focusing on treating adhesive polymer films with antifouling properties for attachment to sensors to mitigate biofouling. Kits containing this film will be sold via our e-commerce store for application in the field by the end-users, offering savings of thousands of dollars per year in reduced maintenance costs.”

3. RapidAIM

Supporting and growing global fruit and vegetable export markets

“Fruit Fly are the number one biosecurity issue in fruit and vegetable production. Globally US$30b worth of fruit and vegetable production is lost due to fruit fly, and $US18b in global trade is threatened by the pest.

Millions of fruit fly traps across the globe are checked manually, causing delay and risking outbreaks. This can close markets!

RapidAIM is a new era in biosecurity. We provide a service of real-time alerts for the presence and location of fruit fly using wireless trapping technology. This immediate data-driven decision service allows biosecurity agencies, growers and agronomists to respond rapidly to fruit fly detection to control the pest.

This allows for targeted workflow, the protection of existing markets and supports the development of new trading opportunities.”

4. ExByte

Predictive data analytics for preventative maintenance of infrastructure assets including water 

“Each year 7,000 critical water main breaks occur in Australia resulting in billions of dollars in rectification and consequence cost. In contrast, the cost of preventative maintenance is only 10 per cent of the reactive repair cost. The ExByte team has developed a disruptive technology that uses data analytic techniques to predict failure probability based on learned patterns, offering a solution to accurately predict water pipe failures resulting in effective preventative maintenance and a reduction in customer interruptions.”

5. Future Feed

A natural feed additive from seaweed that dramatically reduces livestock methane and increases production.

“The world is under increasing pressure to produce more food and producing more food is contributing to climate change. Livestock feed supplementation with FutureFeed is the solution. It can improve farm profitability and tackles climate change. FutureFeed can also provide farmers access to other income streams through carbon markets and provide access to premium niche markets through a low carbon footprint and environmentally friendly product.”

6. elumin8

An energy efficiency product that empowers households to understand and reduce their energy consumption.

“It is very difficult for households to improve their energy efficiency and transition to a sustainable future as current solutions are boring, costly and confusing. Elumin8 solves this problem by providing tailored energy information via a unique communication channel, allowing homeowners to directly engage with their home in a human and personable way as though it was another member of the family. Elumin8 also guides the household step by step along the journey to energy independence by improving energy efficiency and taking the risk and confusion out of installing solar and batteries.

We do this by collecting electricity data from a single sensor and use unique algorithms to disaggregate the data and determine appliance level consumption. Social media applications and advanced analytics are then utilised to connect the homeowner with their home allowing instant and humanised communication to ensure they are engaged with their energy use.”

7. Coviu

An online face-to-face business transaction platform.

“The way we work is changing. We need tools to enable those changes.

Traditional video conferencing tools are clunky and do not support experts like coaches, clinicians or lawyers in delivering and charging for their professional services online.

Coviu is the solution. Professionals get a frictionless and easy-to-use solution for setting up online consulting rooms and invite clients to rich interactive consults. One click and your client is talking to you in their browser – no software installations, no complicated call setup.

Coviu is a groundbreaking new video and data conferencing technology that works peer-to-peer allowing for massive scalability, speed and affordability.”

8. Reflexivity

A process that helps mining companies proactively manage community sentiment before conflict occurs.

“When resources companies lose the trust of the communities they work alongside, conflict occurs. Projects take twice as long to develop as they did a decade ago and cost 30 per cent more than they should because of social conflict. Companies don’t have the tools to systematically understand what their communities think about them, and communities have few constructive ways to feel heard.

Reflexivity has solved this problem by providing our customers with a sophisticated data analytic engine that translates community survey data we collect into prioritised opportunities for trust building and risk mitigation strategies. Our analytics identify those factors that build and degrade trust in a company, in the minds of community members; our customers are then able to invest resources and energy into the issues that matter most. Using mobile technology, our data streams to our customers in real time via a subscription model.

We have engaged over 14,000 community members in eight countries, and generated $1.5m in revenue in the last three years. And while we started in mining, our process is valuable wherever these relationships are important. We are building a service delivery platform to scale up our process and we are seeking support and advice to turn our successful global research program into a successful global business.”

9. Meals by Design

Healthy convenience never tasted so good!

“Ready-to-eat convenience doesn’t have to result in dissatisfaction and guilt. By bringing together the latest innovations in food manufacturing, including High Pressure Thermal processing, and an understanding of the nutritional needs of a diverse population, cuisine favourites can be prepared in a convenient format without compromising eating satisfaction or, importantly, nutrition.

Meals by Design develops premium and customisable meal solutions that cater to nutritional and functional needs, offering healthy convenience without compromise.”

10. ePAT

Real-time pain assessment through facial recognition technology for patients that cannot verbally communicate.

“Imagine you are in excruciating pain, but you can’t tell anyone. This is the reality for millions of non-communicative people world-wide, such as those with moderate to severe dementia. ePAT’s point of care apps utilise facial recognition technology to detect facial micro-expressions which are indicative of pain, to provide these people with a voice.”

11. Modular Photonics: big fast data

Passive fibre-optic technology that significantly increases data transmission capacity.

“Modular Photonics uses a novel integrated photonic chip to enhance the data rate across existing multimode fibre links by 10x and more. The technology enables multiple data channels in parallel without the length restrictions imposed by conventional multimode fibre links.”

Small scale, big consequences

The nanoscale is so tiny it’s almost beyond comprehension. Too small for detection by the human eye, and not even discernible by most laboratory microscopes, it refers to measurements in the range of 1–100 billionths of a metre. The nanoscale is the level at which atoms and molecules come together to form structured materials.

The Nanochemistry Research Institute — NRI — conducts fundamental and applied research to understand, model and tailor materials at the nanoscale. It brings together scientists – with expertise in chemistry, engineering, computer simulations, materials and polymers – and external collaborators to generate practical applications in health, energy, environmental management, industry and exploration. These include new tests for cancer, and safer approaches to oil and gas transportation. Research ranges from government-funded exploratory science to confidential industry projects.


The NRI hosts research groups with specialist expertise in the chemical formation of minerals and other materials. “To understand minerals, it’s often important to know what is going on at the level of atoms,” explains Julian Gale, John Curtin Distinguished Professor in Computational Chemistry and former Acting Director of the NRI. “To do this, we use virtual observation – watching how atoms interact at the nanoscale – and modelling, where we simulate the behaviour of atoms on a computer.”

The mineral calcium carbonate is produced through biomineralisation by some marine invertebrates. “If we understand the chemistry that leads to the formation of carbonates in the environment, then we can look at how factors such as ocean temperature and pH can lead to the loss of minerals that are a vital component of coral reefs,” says Gale.

This approach could be used to build an understanding of how minerals are produced biologically, potentially leading to medical and technological benefits, including applications in bone growth and healing, or even kidney stone prevention and treatment.

Gale anticipates that a better understanding of mineral geochemistry may also shed light on how and where metals are distributed. “If you understand the chemistry of gold in solution and how deposits form, you might have a better idea where to look for the next gold mine,” he explains.

There are also environmental implications. “Formation of carbonate minerals, especially magnesium carbonate and its hydrates, has been proposed as a means of trapping atmospheric carbon in a stable solid state through a process known as geosequestration. We work with colleagues in the USA to understand how such carbonates form,” says Gale.

Minerals science is also relevant in industrial settings. Calcium carbonate scaling reduces flow rates in pipes and other structures in contact with water. “As an example, the membranes used for reverse osmosis in water desalination – a water purification technology that uses a semipermeable membrane to remove salt and other minerals from saline water – can trigger the formation of calcium carbonate,” explains Gale. “This results in partial blockage of water flow through the membrane, and reduced efficiency of the desalination process.”

A long-term aim of research in this area is to design water membranes that prevent these blockages. There are also potential applications in the oil industry, where barium sulphate (barite) build-up reduces the flow in pipes, and traps dangerous radioactive elements such as radium.

Another problem for exploration companies is the formation of hydrates of methane and other low molecular weight hydrocarbon molecules. These can block pipelines and processing equipment during oil and gas transportation and operations, which results in serious safety and flow assurance issues. Materials chemist Associate Professor Xia Lou leads a large research group in the Department of Chemical Engineering that is developing low-dose gas hydrates inhibitors to prevent hydrate formation. “We also develop nanomaterials for the removal of organic contaminants in water, and nanosensors to detect or extract heavy metals,” she says.

“To understand minerals, it’s often important to know what is going on at the level of the atom.”


The capacity to control how molecules come together and then disassociate offers tantalising opportunities for product development, particularly in food science, drug delivery and cosmetics. In the Department of Chemistry, Professor Mark Ogden conducts nanoscale research looking at hydrogels, or networks of polymeric materials suspended in water.

“We study the 3D structure of hydrogels using the Institute’s scanning probe microscope,” says Ogden. “The technique involves running a sharp tip over the surface of the material. It provides an image of the topography of the surface, but we can also measure how hard, soft or sticky the surface is.” Ogden is developing methods for watching hydrogels grow and fall apart through heating and cooling. “We have the capability to do that sort of imaging now, and this in situ approach is quite rare around the world,” he says.

Ogden also conducts chemical research with a group of metals known as lanthanoids, which are rare-earth elements. His recent work, in collaboration with the Australian Nuclear Science and Technology Organisation (ANSTO), discovered unique elongated nanoscale structures.

“We’ve identified lanthanoid clusters that can emit UV light and have magnetic properties,” explains Ogden. “Some of these can form single molecule magnets. A key outcome will be to link cluster size and shape to these functional properties.” This may facilitate guided production of magnetic and light-emitting materials for use in sensing and imaging technologies.

“If you understand the chemistry of gold … then you might have a better idea of where to start looking for the next gold mine.”


The NRI is working across several areas of chemistry and engineering to develop nanoscale tools for detecting and treating health conditions. Professor Damien Arrigan applies a nanoscale electrochemical approach to detecting biological molecules, also known as biosensing. He and his Department of Chemistry colleagues work at the precise junction between layered oil and water.

“We make oil/water interfaces using membranes with nanopores, some as small as 15 nanometres,” he says. “This scale delivers the degree of sensitivity we’re after.” The scientists measure the passage of electrical currents across the tiny interfaces and detect protein, which absorbs at the boundary between the two liquids. “As long as we know a protein’s isoelectric point – that is, the pH at which it carries no electrical charge – we can measure its concentration,” he explains.

The technique enables the scientists to detect proteins at nanomolar (10−6 mol/m3) concentrations, but they hope to shift the sensitivity to the picomolar (10−9 mol/m3) range – a level of detection a thousand times more sensitive and not possible with many existing protein assessments. Further refinement may also incorporate markers to select for proteins of interest. “What we’d like to do one day is measure specific proteins in biological fluids like saliva, tears or serum,” says Arrigan.

The team’s long-term vision is to develop highly sensitive point-of-need measurements to guide treatments – for example, testing kits for paramedics to detect markers released after a heart attack so that appropriate treatment can be immediately applied.

Also in the Department of Chemistry, Dr Max Massi is developing biosensing tools to look at the health of living tissues. His approach relies on tracking the location and luminescence of constructed molecules in cells. “We synthesise new compounds based on heavy metals that have luminescent properties,” explains Massi. “Then we feed the compounds to cells, and look to see where they accumulate and how they glow.”

The team synthesises libraries of designer chemicals for their trials. “We know what properties we’re after – luminescence, biological compatibility and the ability to go to the part of the cell we want,” says Massi.

For example, compounds can be designed to accumulate in lysosomes – the tiny compartments in a cell that are involved in functions such as waste processing. With appropriate illumination, images of lysosomes can then be reconstructed and viewed in 3D using a technique known as confocal microscopy, enabling scientists to assess lysosome function. Similar approaches are in development for disease states such as obesity and cancer.

Beyond detection, this technique also has potential for therapeutic applications. Massi has performed in vitro studies with healthy and cancerous cells, suggesting that a switch from detection to treatment may be possible by varying the amount of light used to illuminate the cells.

“A bit of light allows you to visualise. A lot of light will allow you to kill the cells,” explains Massi. His approach is on track for product development, with intellectual property protection filed in relation to using phosphorescent compounds to determine the health status of cells.

Improving approaches to cancer treatment is also an ongoing research activity for materials chemist Dr Xia Lou, who designs, constructs and tests nanoparticles for targeted photodynamic therapy, which aims to selectively kill tumours using light-induced reactive oxygen species.

“We construct hybrid nanoparticles with high photodynamic effectiveness and a tumour-targeting agent, and then test them in vitro in our collaborators’ laboratories,” she says. “Our primary interest is in the treatment of skin cancer. The technology has also extended applications in the treatment of other diseases.” Lou has successfully filed patents for cancer diagnosis and treatment that support the potential of this approach.


Spheres and other 3D shapes constructed at the nanoscale offer potential for many applications centred on miniaturised storage and release of molecules and reactivity with target materials. Dr Jian Liu in the Department of Chemical Engineering develops new synthesis strategies for silica or carbon spheres, or ‘yolk-shell’-structured particles. “Our main focus is the design, synthesis and application of colloidal nanoparticles including metal, metal oxides, silica and carbon,” says Liu.

Most of these colloidal particles are nanoporous – that is, they have a lattice-like structure with pores throughout. The applications of such nanoparticles include catalysis, energy storage and conversion, drug delivery and gene therapy.

“The most practical outcome of our research would be the development of new catalysts for the production of synthetic gases, or syngas,” he says. “It may also lead to new electrodes for lithium-ion batteries.” Once developed, nanoscale components for this type of rechargeable battery are expected to bring improved safety and durability, and lower costs.


Atomic Modelling matters in research

Professor Julian Gale leads a world-class research group in computational materials chemistry at the NRI. “We work at the atomic level, looking at fundamental processes by which materials form,” he says. “We can simulate up to a million atoms or more, and then test how the properties and behaviour of the atoms change in response to different experimental conditions.” Such research is made possible through accessing a petascale computer at WA’s Pawsey Centre – built primarily to support Square Kilometre Array pathfinder research.

The capacity to model the nanoscale behaviour of atoms is a powerful tool in nanochemistry research, and can give direction to experimental work. The calcium carbonate mineral vaterite is a case in point. “Our theoretical work on calcium carbonate led to the proposal that the mineral vaterite was actually composed of at least three different forms,” Gale explains. “An international team found experimental evidence which supported this idea.”

NRI Director Professor Andrew Lowe regards this capacity as an asset. “Access to this kind of atomic modelling means that our scientists can work within a hypothetical framework to test whether a new idea is likely to work or not before they commit time and money to it,” he explains.

Scientists at Curtin’s Nanochemistry Research Institute investigate minerals at an atomic level, which can, for example, build an understanding of mineral loss in coral reefs.
Scientists at Curtin’s Nanochemistry Research Institute investigate minerals at an atomic level, which can, for example, build an understanding of mineral loss in coral reefs.

New direction

Formally established in 2001, the Nanochemistry Research Institute began a new era in 2015 through the appointment of Professor Andrew Lowe as Director. Working under his guidance are academic staff and postdoctoral fellows, as well as PhD, Honours and undergraduate science students.

An expert in polymer chemistry, Lowe’s research background adds a new layer to the existing strong multidisciplinary nature of the Institute. “Polymers have the potential to impact on every aspect of fundamental research,” he says. “This will add a new string to the bow of Curtin University science and engineering, and open new and exciting areas of research and collaboration.”

Polymers are a diverse group of materials composed of multiple repeated structural units connected by chemical bonds. “My background is in water-soluble polymers and smart polymers,” explains Lowe. “These materials change the way they behave in response to their external environment – for example, a change in temperature, salt concentrations, pH or the presence of other molecules including biomolecules. Because the characteristics of the polymeric molecules can be altered in a reversible manner, they offer potential to be used in an array of applications, including drug delivery, catalysis and surface modification.”

Lowe has particular expertise in RAFT dispersion polymerisation, a technique facilitating molecular self-assembly to produce capsule-like polymers in solution. “This approach allows us to make micelles, worms and vesicles directly,” he says, describing the different physical forms the molecules can take. “It’s a novel and specialised technique that creates high concentrations of uniformly-shaped polymeric particles at the nanoscale.” Such polymers are candidates for drug delivery and product encapsulation.

Sarah Keenihan

Polymer cells deliver on energy

We can expect to be manufacturing and exporting cheap, lightweight solar cells (electrical devices that convert light energy into electricity) to the rest of the world by 2019, taking renewable energy to remote and off-grid communities such as emergency refugee camps.

This prediction came from Professor David Officer, head of the polymer solar cell program at the CRC for Polymers (CRC-P), which is developing design and manufacturing processes for commercially viable polymer solar cells based on a light-sensitive dye.

Officer described the cells as a “people’s technology” for the future. His optimism is based on patents recently secured by the CRC-P for components that will provide a competitive edge over other consortia developing similar cells. CEO Dr Ian Dagley said CRC-P researchers have also pioneered new cost-effective manufacturing techniques that, for commercial reasons, currently remain secret.

200115_polymer_boxPolymer cells exploit the same photovoltaic principle as silicon- and glass-based rooftop solar panels. Unlike those bulky panels, however, polymer cells are flexible and lightweight and, as a result, can be incorporated onto a wide range of surfaces – from walls to sunshades. Transparent versions can even be used in windows. They can also operate indoors, enabling electricity recycling.

Crucially, however, polymer cells are considerably cheaper to manufacture. Silicon cells, for example, require expensive equipment and carefully controlled conditions, while the polymer product can be produced in minutes with minimal labour using reel-to-reel printers, presenting new opportunities for Australian manufacturing. Officer estimated that, using methods developed by the CRC-P, polymer cells can be produced that cost no more than 50 cents per watt – that’s less than half the price to which the silicon solar cell industry aspires.

Dye-sensitised solar cells first created much excitement when they were invented 23 years ago, but have failed to deliver commercially on their early promise. So far, only one company – Wales-based G24 Power – is manufacturing the cells, and only on a small scale.

A key obstacle has been the cost of materials. “We’ve been trying to develop a cost-effective solution to producing the solar cells using inexpensive materials, some of which we’ve made ourselves and can scale up quite easily,” explained Dagley.

The CRC has achieved its materials and fabrication advances through a collaboration of expertise across five partner institutions: the University of Wollongong – where Officer developed new techniques that synthesise cheap organic dyes – the Australian Nuclear Science and Technology Organisation and the Universities of Newcastle, Queensland and NSW.

The CRC-P is investigating opportunities with sufficiently large markets to make manufacturing the cells cost-effective, which Officer said has been another obstacle to commercialisation. One contender is in horticulture, where transparent cells incorporated into greenhouses could power cooling and water pumps. The cells may even be able to promote plant growth by transmitting only beneficial wavelengths of light.

Jude Dineley

www.crcp.com.au