Tag Archives: ecology

New biosecurity centre to stop fruit flies

Upgraded bio-security measures to combat fruit fly will be introduced in Australia, bringing added confidence to international trade markets.

South Australia is the only mainland state in Australia that is free from fruit flies – a critical component of the horticultural industries’ successful and expanding international export market.

A new national Sterile Insect Technology facility in Port Augusta, located in the north of South Australia, will produce billions of sterile male fruit flies – at the rate of 50 million a week – to help prevent the threat of fruit fly invading the state.

The new measures will help secure producers’ access to important citrus and almond export markets including the United States, New Zealand and Japan, worth more than $800 million this year.

The Sterile Insect Technique (SIT) introduces sterile flies into the environment that then mate with the wild population, ensuring offspring are not produced.

Macquarie University Associate Professor Phil Taylor says the fly, know as Qfly because they come from Queensland, presents the most difficult and costly biosecurity challenge to market access for most Australian fruit producers.

“Fruit flies, especially the Queensland fruity fly, present a truly monumental challenge to horticultural production in Australia,” he says.

“For generations, Australia has relied on synthetic insecticides to protect crops, but these are now banned for many uses. Environmentally benign alternatives are needed urgently – this is our goal.

The impetus behind this initiative is to secure and improve trade access both internationally and nationally for South Australia.

It will increase the confidence of overseas buyers in the Australian product and make Australia a more reliable supplier. Uncertainty or variation of quality of produce would obviously be a concern for our trading partners.”

South Australia’s Agriculture Minister Leon Bignell says the $3.8 million centre would produce up to 50 million sterile male Qflies each week.

“The State Government has invested $3 million and Horticulture Innovation Australia Ltd (HIA) has contributed $800,000 in this project and construction is expected to take 10 months,” Bignell says.

“While fruit fly is a major problem with horticultural crops in Australia’s other mainland states, South Australia remains fruit fly free, but we are still at risk of outbreak.”

“Producing male-only sterile Qflies has never been done before on this scale and this facility will have an enormous impact on the way in which we deal with outbreaks.”

Fruit fly management protects the commercial production of fruit and vegetables, including wine grapes and almonds, with an estimated farm-gate value of $851 million.

South Australia is also the only mainland state which has a moratorium on growing GM food crops and is one of the few places in the world free of the vine-destroying pest phylloxera.

“Because of these attributes, South Australian products stand out in the competitive global market, which is increasingly seeking clean and safe food and wine,” Bignell says.

The research partner consortium, SITplus, intends to invest about $50 million during the next five years to support the national fruit fly management program.

The consortium is a research group with experts from Macquarie University, Primary Industries and Regions SA’s Biosecurity SA and South Australian Research and Development Institute divisions, HIA, the CSIRO Health and Biosecurity Flagship, Plant & Food Research Australia, and the NSW Department of Primary Industries.

– John Merriman

This article was first published by The Lead South Australia on 2 September 2015. Read the original article here.

Mosquito urban wetlands

After a stint working as an environmental consultant trawling swampland in Sydney and Wollongong, Jayne Hanford has gone back to uni to do a postgrad researching one of Australia’s least favourite invertebrates – mosquitoes.

“Bugs are really cool,” says Jayne, with characteristic enthusiasm. “They’re like little aliens when you look at them under a microscope, and there’s a lot of diversity.”

Jayne’s research at The University of Sydney looks at what conditions can create mosquito-free urban wetlands and preserve urban wetland biodiversity.

“I’m the only person researching the aquatic environment – there are people working on tic pathogens, bees, spiders, ants and bats in urban areas,” says Jayne, describing the diversity of research being undertaken at her lab.

There is currently little research on biodiversity in urban wetlands – and what research is available is somewhat disjointed.

While the conditions conducive for mosquitoes are well understood in natural wetlands, as are the conditions for creating high biodiversity, these findings haven’t been applied to urban wetland ecology.

“I hadn’t really thought about mosquitoes before, I was more interested in the protection of biodiversity, and thought it would be interesting to look at that in an urban context,” says Jayne.

Her main supervisor at the uni, Associate Professor Dieter Hochuli is focused on urban ecology, so Jayne took the opportunity to undertake research into how biodiversity and mosquito populations are linked in urban wetlands.

“The councils I’ve spoken to would really like to know if their wetlands do have mosquitoes because it influences how they manage them in the future.”

As wetland vegetation are often good breeding grounds for mosquitoes, Jayne’s research will assist councils to understand the biodiversity value of a wetland and whether it poses a risk to public health from mosquito-borne diseases.

This understanding will lead to better management of a wetland’s biodiversity while minimising risks from mosquitos. And could allow for the integration of biodiversity and stormwater and wastewater management strategies with public health programs.

“My research will look at what we need to create a really good network of wetlands for conservation in urban areas that tick all the boxes,” explains Jayne.

“They must be visually appealing, be places for recreation, provide a habitat for wildlife, improve water quality, minimise mosquito or weed infestations – and avoid making people sick. People can walk their dogs around them, and they benefit biodiversity.”

– Carl Williams

Antarctic robots trawl for climate data

The research, led by ARC Future Fellow Dr Guy Williams and published in November 2014, provides the most complete picture yet of Antarctic sea ice thickness and structure.

The data was collected by an Autonomous Underwater Vehicle (AUV) deployed during a two-month exploration in late 2012 as part of an international collaboration between polar scientists, including the Antarctic Climate and Ecosystems CRC (ACE CRC). It’s hoped the work will help explain the ‘paradox’ of Antarctic sea ice extent, which has grown slightly during the past 30 years. This is in stark contrast to Arctic sea ice, which has shown a major decline.

Previously, measurements were made via drill holes in the ice and supplemented by visual observations made from icebreakers as they crashed and ploughed through the sea ice zone, said Williams.

In contrast, the AUV gathers information by travelling beneath the ice, producing 3D maps of the underside of the ice based on data captured by a multi-beam sonar instrument. Complex imagery of an area the size of several football fields can be compiled in just six hours.
The manual drill estimates of thickness have never exceeded 5–6 m, but the AUV regularly returned thicknesses over 10 m and up to 16 m.

Autonomous Underwater Vehicles (above) as well as data-gathering seals are revealing surprising global climate effects in the Antarctic.
Autonomous Underwater Vehicles (above) as well as data-gathering seals are revealing surprising global climate effects in the Antarctic.

“This sort of thick ice would simply never be sampled by drilling or observations from ships,” said Williams. “We measured the thickness of 10 double football fields, and found that our traditional method [manual drill lines] would have underestimated the volume by over 20%.”

The researchers can’t yet say that overall Antarctic sea ice thickness is underestimated by this amount. They’ll need to use the AUV over much longer scales – across distances of 1000 km, for example – and directly compare the results with those from traditional methods.

The AUV is one of two new innovative information sources being used by ACE CRC scientists to explore Antarctic sea ice processes and change. They’ve also begun tapping into environmental data gathered in the Southern Ocean by elephant seals. These marine mammals can dive deeper than 1500 m and travel thousands of kilometres in a season.

During the past decade, ecologists and biologists have been equipping them with specialised oceanographic equipment provided by Australia’s Integrated Marine Observing System, to observe where and when they forage.

“These seals had been going to places we could only dream of going with a ship,” said Williams. The first major breakthrough from the seal-gathered data came last year with the confirmation of a new source of Antarctic bottom water, the cold dense water mass created by intense sea ice growth that ultimately influences climate worldwide.

It’s the fourth source to be identified of this influential water mass, and scientists had been looking for it for more than 30 years.
Karen McGhee