Tag Archives: jobs

Australia’s biofuture

Featured image above: Associate Professor Ian O’Hara at the Mackay Biocommodities Pilot Plant. He is pictured inside the plant with the giant vats used for fermentation. Credit: QUT Marketing and Communication/Erika Fish

QUT is supporting the Queensland Government to develop a strategy, including the creation of a 10-year Biofutures Roadmap, for the establishment of an industrial biotechnology industry in Queensland.

Associate Professor Ian O’Hara, principal research scientist at QUT’s Centre for Tropical Crops and Biocommodities (CTCB), says we are facing big challenges: the world needs to produce 70% more food and 50% more energy by 2050, while reducing carbon emissions.

At the same time, says O’Hara, there are opportunities to add value to existing agricultural products. “Waste products from agriculture, for example, can contribute to biofuel production.”

QUT funded a study in 2014 examining the potential value of a tropical biorefinery in Queensland. It assessed seven biorefinery opportunities across northeast Queensland, including in the sorghum-growing areas around the Darling Downs and the sugarcane-growing areas around Mackay and Cairns.

O’Hara says they mainly focused on existing agricultural areas, taking the residues from these to create new high-value products.

But he sees more opportunity as infrastructure across north Queensland continues to develop.

The study found the establishment of a biorefinery industry in Queensland would increase gross state product by $1.8 million per year and contribute up to 6500 new jobs.

“It’s an industry that contributes future jobs in regional Queensland – and by extension, opportunities for Australia,” O’Hara says.

The biorefineries can produce a range of products in addition to biofuels. These include bio-based chemicals such as ethanol, butanol and succinic acid, and bio-plastics and bio-composites – materials made from renewable components like fibreboard.

O’Hara says policy settings are required to put Queensland and Australia on the investment map as good destinations.

“We need strong collaboration between research, industry and government to ensure we’re working together to create opportunities.”

The CTCB has a number of international and Australian partners. The most recent of these is Japanese brewer Asahi Group Holdings, who CTCB are partnering with to develop a new fermentation technology that will allow greater volumes of sugar and ethanol to be produced from sugarcane.

“The biofuels industry is developing rapidly, and we need to ensure that Queensland and Australia have the opportunity to participate in this growing industry,” says O’Hara.

– Laura Boness

www.qut.edu.au

www.ctcb.qut.edu.au

CO₂ cuts nutrition

CO₂ cuts nutrition

Climate change is affecting the Earth, through more frequent and intense weather events, such as heatwaves and rising sea levels, and is predicted to do so for generations to come. Changes brought on by anthropogenic climate change, from activities such as the burning of fossil fuels and deforestation, are impacting natural ecosystems on land and at sea, and across all human settlements.

Increased atmospheric carbon dioxide (CO₂) levels – which have jumped by a third since the Industrial Revolution – will also have an effect on agriculture and the staple plant foods we consume and export, such as wheat.

Stressors on agribusiness, such as prolonged droughts and the spread of new pests and diseases, are exacerbated by climate change and need to be managed to ensure the long-term sustainability of Australia’s food production.

Researchers at the Primary Industries Climate Challenges Centre (PICCC), a collaboration between the University of Melbourne and the Department of Economic Development, Jobs, Transport and Resources in Victoria, are investigating the effects of increased concentrations of CO₂ on grain yield and quality to reveal how a more carbon-enriched atmosphere will affect Australia’s future food security.

CO₂ cuts nutrition
An aerial view of the Australian Grains Free Air CO₂ Enrichment (AGFACE) project, where researchers are investigating the effects of increased concentrations of carbon dioxide on grain yield and quality.

Increasing concentrations of CO₂ in the atmosphere significantly increase water efficiency in plants and stimulate plant growth, a process known as the “fertilisation effect”. This leads to more biomass and a higher crop yield; however, elevated carbon dioxide (eCO₂) could decrease the nutritional content of food.

“Understanding the mechanisms and responses of crops to eCO₂ allows us to focus crop breeding research on the best traits to take advantage of the eCO₂ effect,” says Dr Glenn Fitzgerald, a senior research scientist at the Department of Economic Development, Jobs, Transport and Resources.

According to Fitzgerald, the research being carried out by PICCC, referred to as Australian Grains Free Air CO₂ Enrichment (AGFACE), is also being done in a drier environment than anywhere previously studied.

“The experiments are what we refer to as ‘fully replicated’ – repeated four times and statistically verified for accuracy and precision,” says Fitzgerald. “This allows us to compare our current growing conditions of 400 parts per million (ppm) CO₂ with eCO₂ conditions of 550 ppm – the atmospheric CO₂ concentration level anticipated for 2050.”

The experiments involve injecting CO₂ into the atmosphere around plants via a series of horizontal rings that are raised as the crops grow, and the process is computer-controlled to maintain a CO₂ concentration level of 550 ppm.

CO₂ cuts nutrition
Horizontal rings injecting carbon dioxide into the atmosphere as part of the AGFACE project. Credit: AGFACE

“We’re observing around a 25–30% increase in yields under eCO₂ conditions for wheat, field peas, canola and lentils in Australia,” says Fitzgerald.


Pests and disease

While higher CO₂ levels boost crop yields, there is also a link between eCO₂ and an increase in viruses that affect crop growth.

Scientists at the Department of Economic Development, Jobs, Transport and Resources have been researching the impact of elevated CO₂ levels on plant vector-borne diseases, and they have observed an increase of 30% in the severity of the Barley Yellow Dwarf Virus (BYDV).

CO₂ cuts nutrition
Higher CO₂ levels are linked with an increase in the severity of Barley Yellow Dwarf Virus.

Spread by aphids, BYDV is a common plant virus that affects wheat, barley and oats, and causes yield losses of up to 50%.

“It’s a really underexplored area,” says Dr Jo Luck, director of research, education and training at the Plant Biosecurity Cooperative Research Centre. “We know quite a lot about the effects of drought and increasing temperatures on crops, but we don’t know much about how the increase in temperature and eCO₂ will affect pests and diseases.

“There is a tension between higher yields from eCO₂ and the impacts on growth from pests and diseases. It’s important we consider this in research when we’re looking at food security.”


This increased yield is due to more efficient photosynthesis and because eCO₂ improves the plant’s water-use efficiency.

With atmospheric CO₂ levels rising, less water will be required to produce the same amount of grain. Fitzgerald estimates about a 30% increase in water efficiency for crops grown under eCO₂ conditions.

But nutritional content suffers. “In terms of grain quality, we see a decrease in protein concentration in cereal grains,” says Fitzgerald. The reduction is due to a decrease in the level of nitrogen (N2) in the grain, which occurs because the plant is less efficient at drawing N2 from the soil.

The same reduction in protein concentration is not observed in legumes, however, because of the action of rhizobia – soil bacteria in the roots of legumes that fix N2 and provide an alternative mechanism for making N2 available.

“We are seeing a 1–14% decrease in grain-protein concentration [for eCO₂ levels] and a decrease in bread quality,” says Fitzgerald.

“This is due to the reduction in protein and because changes in the protein composition affect qualities such as elasticity and loaf volume. There is also a decrease of 5–10% in micronutrients such as iron and zinc.”

This micronutrient deficiency, referred to as “hidden hunger”, is a major health concern, particularly in developing countries, according to the International Food Research Policy Institute’s 2014 Global Hunger Index: The challenge of hidden hunger.

There could also be health implications for Australians. As the protein content of grains diminishes, carbohydrate levels increase, leading to food with higher caloric content and less nutritional value, potentially exacerbating the current obesity epidemic.

The corollary from the work being undertaken by Fitzgerald is that in a future CO₂-enriched world, there will be more food but it will be less nutritious. “We see an increase in crop growth on one hand, but a reduction in crop quality on the other,” says Fitzgerald.

Fitzgerald says more research into nitrogen-uptake mechanisms in plants is required in order to develop crops that, when grown in eCO₂ environments, can capitalise on increased plant growth while maintaining N2, and protein, levels.

For now, though, while an eCO₂ atmosphere may be good for plants, it might not be so good for us.

– Carl Williams

www.piccc.org.au

www.pbcrc.com.au

Firing up our start-ups

Firing up our start-ups

Stories of ‘unicorn’ Initial Public Offerings and billionaires in their 30s are great. But it’s the creation of quality jobs that truly makes innovation a national priority.

A recent report from the Office of the Chief Economist showed Australia added about one million jobs from 2006–11. Start-up companies added 1.4 million jobs, whereas older companies shed 400,000 jobs over the same period. But it’s not any start-up that matters; only 3.2% of start-ups take off in a dramatic fashion, providing nearly 80% of those new jobs. While Australia has a relatively high rate of companies starting up, the key seems to be getting more of them into high-growth mode.

When Israel faced a massive influx of immigrants after the collapse of the Soviet Union in 1990, it turned to innovation as a means of providing jobs. Given the country’s lack of natural resources, they didn’t have a choice. A population of four million people taking in one million more meant Israel had to become an innovative economy.

They grew their investment in research and development dramatically – to the point where Israel is now one of only two countries consistently spending more than 4% of GDP on R&D.

Israel has translated that spending into high-tech export success. Now, multinational technology company Intel employs over 10,000 Israelis. The Israeli Government is hands-on in its approach to de-risking early stage companies. But this is not achieved through government spending alone. In fact, the Israeli Government’s share of total R&D spending is just one-third of that of Australia, and its higher education sector is just one half. Business carries the lion’s share of R&D spending in Israel, making up 80% of the total, compared with 60% in Australia.

in text graph2

If we want jobs, we need innovation. We are in a unique period when there seems to be complete political agreement on this point. If we want innovation, we should take lessons from wherever we can learn them to develop the Australian system. A lesson from Israel is to use government spending more effectively at the early stages of company development to shift more start-ups into high-growth mode. If we could double the current 3.2% of today’s start-ups that become high-growth companies, we could provide more rewarding jobs for Australia’s future.

Israel concentrates almost 100% of its government innovation support for business on small and medium-sized enterprises. The comparable figure for Australia is 50% – a big hint for what we could do differently to fire up our start-up sector.

–Tony Peacock

Tony Peacock is CEO of the Cooperative Research Centres Association and founder of KnowHow.

Kickstart innovation culture

Kickstarting the innovation culture

On Monday 7 December, in his first major policy announcement since becoming Prime Minister in September 2015, Malcolm Turnbull unveiled an innovation package to drive an “ideas boom” in Australia.

Speaking at CSIRO in Canberra, Turnbull and Minister for Industry, Innovation and Science, Christopher Pyne announced $1 billion in government spending over four years. The funds, says Turnbull, will kickstart an innovation culture in Australia.

“This statement is an absolutely critical part of securing our prosperity. The big shift is cultural – if we can inspire people to be innovative, the opportunities are boundless,” says Turnbull.

The plan outlines 25 measures across four key areas: culture and capital; embracing risk; incentivising early-stage investment in startups; and addressing governance issues through the establishment of two new bodies to oversee the plan: the Innovation and Science Sub-Committee of Cabinet, chaired by the Prime Minister, and newly established independent advisory board, Innovation and Science Australia.

These, according to Pyne, will “put science and innovation at the heart of government policy”.

“I wrote a list of expectations before I went in and got to tick everyone of them,” says Dr Tony Peacock, Chief Executive of the Corporate Research Centres Association (CRCA). “Now startups will be much better placed to raise their own funds,” he says.

According to Peacock, by changing the insolvency laws, such as reducing the default bankruptcy period from three years to one, and making it easier for startups to gain access to capital, “the government has put the ball back in the innovator’s court”.

The biomedical and biotechnology industries have also welcomed the announcement.

“We are keen to see this positive policy transformed into action that makes a difference to Australia’s ability to commercialise and benefit from our world-class research and development,” says Dr Anna Lavelle, CEO of biotechnology organisation AusBiotech.

The plan represents a major step forward for science innovation in Australia, according to Dr Peter French, CEO and managing director of biopharmaceuticals company Benitec Biopharma, and “is the most exciting and refreshing statement of vision for Australia that I have seen from our politicians”.

French, named this month one of Australia’s “Innovators of Influence” by the Australian Science Innovation Forum, says that ”rewarding academics for working with industry is well intentioned, but without safeguards, could end up being counter productive to Australian innovation”.

The package includes a $100 million boost to the CSIRO budget, reversing the $110 million cut under the Abbot Government last year. The Government will also co-invest with the private sector in the $200 million CSIRO Innovation Fund for new spin-out and startup companies and services created by research institutions. Biomedical research will also benefit from a $250 million Biomedical Translation Fund.

These funds will support investment in spin-off and startups, to develop and commercialise promising products and services from Australia’s research community.

Science research will receive an injection of funding, with $520 million for the Australian Synchrotron facility and $294 million for the Square Kilometre Array over the next decade. The National Collaborative Research Infrastructure Strategy (NCRIS) will also receive $1.5 billion to deliver world-class research facilities to Australian researchers in Australia and abroad.

The package also includes a $36 million Global Innovation Strategy to support collaboration between Australian researchers and businesses with their international counterparts. Landing pads for Australian startups and entrepreneurs will be established in Tel Aviv, Silicon Valley and three other key locations around the globe.

There will also be a $99 million investment in programs to improve digital literacy and skills in STEM amongst young Australians. And $13 million will be made available to increase opportunities for women working in research and STEM industries and start-ups.

“Innovation and Science are two sides of the same coin, and this plan will bring them both together: driving jobs, growth and investment and igniting a national ‘can-do’ attitude,” says Pyne.

– Carl Williams