Tag Archives: environment

Taming toxic pollution

CRC CARE is addressing the significant growing issue of toxic environmental pollution with innovative and effective real-world solutions.

Recently, major concerns have emerged across Australia about sites contaminated by chemical pollutants known as per- and poly-fluoroalkyl substances (PFAS).

Potentially harmful to human health and the environment, some PFAS are active ingredients in firefighting foam. These include PFOS, which is listed in the Stockholm Convention on Persistent Organic Pollutants. PFAS contamination has become a big problem near some firefighting training areas, where it has contaminated soil and water.

“There are more than 100,000 potentially toxic chemicals and five million potentially contaminated sites globally, so there is a real need for innovation,” says Professor Ravi Naidu, CEO of the CRC for Contamination Assessment and Remediation of the Environment (CRC CARE).

One of CRC CARE’s innovations is a product called matCARE, a modified natural clay that can irreversibly lock up PFAS so polluted soil and water can be decontaminated. Naidu says matCARE is 50% more efficient – and thus cheaper – than similar technologies, and does not leach PFAS over time.

Four firefighting training sites have successfully cleaned up the pollution with matCARE and CRC CARE is now looking to partner with companies to broaden its use beyond the safe storage of the chemical. “The technology that’s available at the moment can only immobilise PFAS and unfortunately there is still a contaminated product at the end,” explains Naidu. “We have developed a technology that breaks down PFAS into carbon dioxide and fluoride. Companies are looking for technology that decomposes PFAS into safe products and we have been able to do that.”

Cherese Sonkkila

crccare.com

coral bleaching sun shield trial

Coral bleaching prevented through reef sun shield

A ‘sun shield’ made from an ultra-thin surface film is showing promise as a potential weapon in the fight to protect the Great Barrier Reef from the impacts of coral bleaching.

Great Barrier Reef Foundation Managing Director Anna Marsden said the results from a small-scale research trial led by the scientist who also developed Australia’s polymer bank notes were very encouraging.

The project was supported by The Tiffany & Co. Foundation, made possible through a grant to the University of Melbourne USA Foundation.

“We’ve partnered with scientists from the University of Melbourne and the Australian Institute of Marine Science to develop sun protection for the Reef,” Ms Marsden said.

“The ‘sun shield’ is 50,000 times thinner than a human hair and completely biodegradable, containing the same ingredient corals use to make their hard skeletons – calcium carbonate. It’s designed to sit on the surface of the water above the corals, rather than directly on the corals, to provide an effective barrier against the sun.

“While it’s still early days, and the trials have been on a small scale, the testing shows the film reduced light by up to 30%.

“Scientists tested the effectiveness of the one molecule thick film on seven different coral species in simulated coral bleaching event conditions at the Australian Institute of Marine Science’s National Sea Simulator (SeaSim).

“The surface film provided protection and reduced the level of bleaching in most species.”

With the surface film containing the same ingredient that corals use to make their skeletons, the research also showed the film had no harmful effects on the corals during the trials.

“This is a great example of developing and testing out-of-the-box solutions that harness expertise from different areas. In this case, we had chemical engineers and experts in polymer science working with marine ecologists and coral experts to bring this innovation to life,” Ms Marsden said.

“The project set out to explore new ways to help reduce the impact of coral bleaching affecting the Great Barrier Reef and coral reefs globally and it created an opportunity to test the idea that by reducing the amount of sunlight from reaching the corals in the first place, we can prevent them from becoming stressed which leads to bleaching.

“It’s important to note that this is not intended to be a solution that can be applied over the whole 348,000 square kilometres of Great Barrier Reef – that would never be practical. But it could be deployed on a smaller, local level to protect high value or high-risk areas of reef.

“The concept needs more work and testing before it gets to that stage, but it’s an exciting development at a time when we need to explore all possible options to ensure we have a Great Barrier Reef for future generations.”

The research team comprised of Professors Greg Qiao and David Solomon and Dr Joel Scofield from the University of Melbourne, Dr Emma Prime (formerly University of Melbourne, now Deakin University), and Dr Andrew Negri and Florita Flores from the Australian Institute of Marine Science. Professor Solomon (AC) was the winner of the Prime Minister’s Prize for Science in 2011 for his exceptional contributions to polymer science.

First published by the Great Barrier Reef Foundation 

pollination

Honeybee health: a #dataimpact story

Featured image above: Environmental stressors which alter bee pollination, like extreme weather and pesticides, are assessed using large data sets generated by bees from all over the world via fitted micro-sensor ‘backpacks’. Credit: Giorgio Venturieri

Bee colonies are dying out worldwide and nobody is exactly sure why. The most obvious culprit is the Varroa mite which feeds on bees and bee larvae, while also spreading disease. The only country without the Varroa mite is Australia. However, experts believe that there are many factors affecting bee health.

To unravel this, CSIRO is leading the Global Initiative of Honeybee Health (GIHH) in gathering large sets of data on bee hives from all over the world. High-tech micro-sensor ’backpacks’ are fitted to bees to log their movements, similar to an e-tag. The data from individual bees is sent back to a small computer at the hive.

Researchers are able to analyse this data to assess which stressors – such as extreme weather, pesticides or water contamination – affect the movements and pollination of bees.

Maintaining honey bee populations is essential for food security as well securing economic returns from crops. Bee crop pollination is estimated to be worth up to $6 billion to Australian agriculture alone.

Currently 50,000 bees have been tagged and there may be close to one million by the end of 2017. Researchers aim to not only improve the health of honey bees but to increase crop sustainability and productivity through pollination management.

This article was first published by the Australian National Data Service on 10 October 2016. Read the original article here.

You might also enjoy:

Birth defects: a data discovery

 

water sensitivity

Water sensitivity can be achieved in Australia

Featured image above: Achieving greater water sensitivity in Australia is possible if the community is engaged in water management strategies, says a recent report.

Has pursuit of the Australian dream – house and garden on the quarter-acre block – led to unsustainable water consumption? While our population grows and climate change renders rainfall less reliable, millions of backyards in our sprawling cities continue to drink thirstily from increasingly scarce water resources.

But it is possible to adapt our suburbs to become more water sensitive, argues Associate Professor Seamus O’Hanlon, co-author of ‘Water, history and the Australian city: Urbanism, suburbanism and water in a dry continent, 1788–2015’. This new report by the Cooperative Research Centre (CRC) for Water Sensitive Cities is part of research output for Understanding social processes to achieve water sensitive futures (Project A2.1).

The engaging historical account of white settlement and water management in Brisbane, Melbourne, and Perth suggests how such adaptation might be achieved. Arguing that good public policy must be historically informed so that lessons of the past influence practice in the future, the report demonstrates the effectiveness of simple and relatively inexpensive strategies to reduce cities’ water consumption, and makes recommendations for how these measures may be employed as part of an overall strategy toward a more water sensitive future.

Historical context crucial to creating water sensitivity

So can the Aussie dream survive in a water sensitive age? In fact, we have no choice, argues Seamus. “We simply cannot go back to year zero and start again. Rather, we must work with suburban communities to adapt to hydrological constraints.”

A central concept in the report is “path-dependency”, meaning that decisions made in the past constrain contemporary practices and policy options. For example, since the early nineteenth century, Australians have displayed a preference for low-density detached housing with gardens, despite the high per-capita cost of supplying services and infrastructure. That, argues Seamus, is not likely to change significantly.

Traditionally, water shortages in Australian cities have been overcome by increasing supply. Governments and water managers have focused on big engineering solutions, such as more and bigger dams (and, more recently, desalination plants) to “drought-proof” growing cities. Increasing water security during the post-war decades encouraged Australians to develop profligate water-use habits, such as frequent showering, growing lush gardens, and hosing driveways.

It was not until the 1980s that thinking began to turn from increasing supply to fostering more efficient usage. In some cities, residential water use had not even been monitored; and charging residents for its use was unthinkable.

Pricing and public education

The report shows that, while Australians have been extravagant with water, they have always shown a remarkable willingness to adapt water habits and usage (notably for gardens) during times of crisis. In practice, two important but administratively simple and cheap policy changes have had enormous impact on residential water use: water pricing and public education campaigns.

This offers a valuable clue about how we can make our thirsty cities more water sensitive. Our adaptability to changed water conditions demonstrates how attitudes – of both government and the public – can change significantly towards.

“Trusting in people to modify behaviour and having a price mechanism are big, big ways of making changes.”

However, the report points out how quickly lessons of water sensitivity are let go in times of plenty. It argues that we can no longer afford to forget: “In a climate-change influenced, water-constrained future, public education campaigns about the importance of water sensitivity should become a permanent component of public policy.”

Working with people

Working with people is pivotal, Seamus insists. “We need behaviour change, but we have to accept that people want to live in a certain way. So let’s adapt our policies to address that – the obvious one is rainwater tanks. The detached house allows you to capture water, which is not so easy to do in multi-storey blocks and apartments.”

Jean Brennan, Coordinator Water and Catchments at Sydney’s Inner West Council, has had considerable success in delivering water sensitive outcomes through sub-catchment programs in Marrickville that work at the neighbourhood level and involve extensive engagement with local communities and stakeholders. “Every activity we do – from involving whole communities, to individuals and local government staff – is, in effect, public education,” she says.

“This report is a fascinating read and particularly useful for advancing the third pillar of water sensitive cities: cities comprising water sensitive communities,” says Jean. “It brings to light the importance of water professionals needing to understand the full history and context before embarking on plans and decisions around water management.”

Decision makers with historical understanding and support for community participation will develop appropriate, context-specific plans that are broadly supported and likely to be implemented, Jean argues. “This report will support practitioners to do that,” she says.

– Nicola Dunnicliff-Wells

This article was first published by Cooperative Research Centre for Water Sensitive Cities on 26 July 2016. Read the original article here.

water software

Software saves rainwater

Featured image above: Stadium Australia in Sydney Olympic Park Credit: Tim Keegan

A dynamic software program utilising kinetic energy is helping buildings with large roof areas in Southeast Asia harvest and recycle rainwater.

Freshwater scarcity and wastage is a global environmental issue, leading to nations such as Malaysia to seek siphonic drainage solutions to help recycle the precious resource.

Researchers at the University of South Australia have developed a software package to help roof drainage companies construct highly effective systems across a range of major infrastructure.

The Adelaide-based university’s Pro-Vice Chancellor of the Division of Information Technology, Engineering and the Environment Simon Beecham said the dynamic program was the first in the world to follow rainfall through its entire cycle to ensure complete effectiveness.

Stadium Australia, which hosted the athletics and opening ceremony at the 2000 Sydney Olympic Games, was the first structure to utilise the technology.

“Now a number of large buildings in Southeast Asia are using this technology, like the airports in Hong Kong and Kuala Lumpur. Malaysia has incorporated it into many of its shopping centres as well,” Beecham says.

“The buildings that were designed with the help of the software are able to harvest every single drop of water.”

The Kuala Lumpur Convention Centre in Malaysia, which hosts a number of large conferences, exhibitions, and concerts, is another big adopter of the technology.

The rainwater collected from the roofs is stored in large tanks and used to irrigate nearby fields or gardens. The recycled water is also used for the flushing of toilets to reduce the reliance on potable water.

Beecham partners with Australian drainage company Syfon to design state-of-the-art systems throughout Australasia.

His software allows Syfon to calculate the size of drainpipes and locate where hydraulic chambers need to be placed.

The company’s name is a play on siphonic systems, the method it uses to harvest rainwater.

Siphonic drainage systems convert open-air water mixtures into a pure water pressure system without any moving parts or electronics. Its hydraulic system allows the pipes to move large quantities of water very quickly.

Beecham says siphonic systems were used because the high pressures they created reduced the amount of additional energy required to pump water.

“Imagine if you had a pen in your hand and held it up and then dropped it to the floor. That’s an example of a solid object converting its potential energy into kinetic energy,” he says.

“Water can do the same thing. You get a very efficient drainage of your water where the pressure is so great it can even go uphill, and it also means you can run horizontal pipes for long distances.

“Its clever design of the hydraulics system creates a vacuum that sucks water in and converts the potential energy of rainfall into kinetic energy.”

This process allows large storage tanks to be placed away from the roof structure if more space is required.

Siphonic systems require a building of more than three stories to work and cannot be applied to residential homes.

-Caleb Radford 

This article was first published by The Lead South Australia on 4th May 2016. Read the original article here

carbon industry

The new carbon industry

The Paris 2015 agreement presented cities with a global challenge. “Buildings and cities contribute upwards of 40% of global carbon emissions,” says Professor Deo Prasad, CEO of the Low Carbon Living CRC (CRCLCL).

Leveraging the knowledge of researchers from the CSIRO and five of Australia’s top universities, as well as experts in the field, the CRCLCL is heading up efforts to deliver a low carbon built environment in Australia. Its ambitious aim is to cut residential and commercial carbon emissions by 10 megatonnes by 2020.

“The CRCLCL is at the forefront of driving technological and social innovation in the built environment to reduce carbon emissions,” says Prasad.

Recognised as a world-leading research organisation by the United Nations Environment Programme, the CRCLCL collaborates with industry partners like AECOM and BlueScope, and universities and governments.

“We’re looking to bring emissions down, and in the process we want to ensure global competitiveness for Australian industry by helping to develop the next generation of products, technologies, advanced manufacturing and consulting services,” says Prasad.

CRCLCL activities range from urban sustainable design and solar energy to software and community engagement.

“By working effectively with government, researchers and industry, we employ an ‘end-user’ driven approach to research that maximises uptake and utilisation,” says Prasad.

– Carl Williams

lowcarbonlivingcrc.com.au

CO₂ cuts nutrition

CO₂ cuts nutrition

Climate change is affecting the Earth, through more frequent and intense weather events, such as heatwaves and rising sea levels, and is predicted to do so for generations to come. Changes brought on by anthropogenic climate change, from activities such as the burning of fossil fuels and deforestation, are impacting natural ecosystems on land and at sea, and across all human settlements.

Increased atmospheric carbon dioxide (CO₂) levels – which have jumped by a third since the Industrial Revolution – will also have an effect on agriculture and the staple plant foods we consume and export, such as wheat.

Stressors on agribusiness, such as prolonged droughts and the spread of new pests and diseases, are exacerbated by climate change and need to be managed to ensure the long-term sustainability of Australia’s food production.

Researchers at the Primary Industries Climate Challenges Centre (PICCC), a collaboration between the University of Melbourne and the Department of Economic Development, Jobs, Transport and Resources in Victoria, are investigating the effects of increased concentrations of CO₂ on grain yield and quality to reveal how a more carbon-enriched atmosphere will affect Australia’s future food security.

CO₂ cuts nutrition
An aerial view of the Australian Grains Free Air CO₂ Enrichment (AGFACE) project, where researchers are investigating the effects of increased concentrations of carbon dioxide on grain yield and quality.

Increasing concentrations of CO₂ in the atmosphere significantly increase water efficiency in plants and stimulate plant growth, a process known as the “fertilisation effect”. This leads to more biomass and a higher crop yield; however, elevated carbon dioxide (eCO₂) could decrease the nutritional content of food.

“Understanding the mechanisms and responses of crops to eCO₂ allows us to focus crop breeding research on the best traits to take advantage of the eCO₂ effect,” says Dr Glenn Fitzgerald, a senior research scientist at the Department of Economic Development, Jobs, Transport and Resources.

According to Fitzgerald, the research being carried out by PICCC, referred to as Australian Grains Free Air CO₂ Enrichment (AGFACE), is also being done in a drier environment than anywhere previously studied.

“The experiments are what we refer to as ‘fully replicated’ – repeated four times and statistically verified for accuracy and precision,” says Fitzgerald. “This allows us to compare our current growing conditions of 400 parts per million (ppm) CO₂ with eCO₂ conditions of 550 ppm – the atmospheric CO₂ concentration level anticipated for 2050.”

The experiments involve injecting CO₂ into the atmosphere around plants via a series of horizontal rings that are raised as the crops grow, and the process is computer-controlled to maintain a CO₂ concentration level of 550 ppm.

CO₂ cuts nutrition
Horizontal rings injecting carbon dioxide into the atmosphere as part of the AGFACE project. Credit: AGFACE

“We’re observing around a 25–30% increase in yields under eCO₂ conditions for wheat, field peas, canola and lentils in Australia,” says Fitzgerald.


Pests and disease

While higher CO₂ levels boost crop yields, there is also a link between eCO₂ and an increase in viruses that affect crop growth.

Scientists at the Department of Economic Development, Jobs, Transport and Resources have been researching the impact of elevated CO₂ levels on plant vector-borne diseases, and they have observed an increase of 30% in the severity of the Barley Yellow Dwarf Virus (BYDV).

CO₂ cuts nutrition
Higher CO₂ levels are linked with an increase in the severity of Barley Yellow Dwarf Virus.

Spread by aphids, BYDV is a common plant virus that affects wheat, barley and oats, and causes yield losses of up to 50%.

“It’s a really underexplored area,” says Dr Jo Luck, director of research, education and training at the Plant Biosecurity Cooperative Research Centre. “We know quite a lot about the effects of drought and increasing temperatures on crops, but we don’t know much about how the increase in temperature and eCO₂ will affect pests and diseases.

“There is a tension between higher yields from eCO₂ and the impacts on growth from pests and diseases. It’s important we consider this in research when we’re looking at food security.”


This increased yield is due to more efficient photosynthesis and because eCO₂ improves the plant’s water-use efficiency.

With atmospheric CO₂ levels rising, less water will be required to produce the same amount of grain. Fitzgerald estimates about a 30% increase in water efficiency for crops grown under eCO₂ conditions.

But nutritional content suffers. “In terms of grain quality, we see a decrease in protein concentration in cereal grains,” says Fitzgerald. The reduction is due to a decrease in the level of nitrogen (N2) in the grain, which occurs because the plant is less efficient at drawing N2 from the soil.

The same reduction in protein concentration is not observed in legumes, however, because of the action of rhizobia – soil bacteria in the roots of legumes that fix N2 and provide an alternative mechanism for making N2 available.

“We are seeing a 1–14% decrease in grain-protein concentration [for eCO₂ levels] and a decrease in bread quality,” says Fitzgerald.

“This is due to the reduction in protein and because changes in the protein composition affect qualities such as elasticity and loaf volume. There is also a decrease of 5–10% in micronutrients such as iron and zinc.”

This micronutrient deficiency, referred to as “hidden hunger”, is a major health concern, particularly in developing countries, according to the International Food Research Policy Institute’s 2014 Global Hunger Index: The challenge of hidden hunger.

There could also be health implications for Australians. As the protein content of grains diminishes, carbohydrate levels increase, leading to food with higher caloric content and less nutritional value, potentially exacerbating the current obesity epidemic.

The corollary from the work being undertaken by Fitzgerald is that in a future CO₂-enriched world, there will be more food but it will be less nutritious. “We see an increase in crop growth on one hand, but a reduction in crop quality on the other,” says Fitzgerald.

Fitzgerald says more research into nitrogen-uptake mechanisms in plants is required in order to develop crops that, when grown in eCO₂ environments, can capitalise on increased plant growth while maintaining N2, and protein, levels.

For now, though, while an eCO₂ atmosphere may be good for plants, it might not be so good for us.

– Carl Williams

www.piccc.org.au

www.pbcrc.com.au

Nuclear waste solution

Featured image above: Alejandra Siverio-Gonzalez of the Synroc team. Credit: ANSTO

Synroc technology is an innovative and versatile nuclear waste management solution developed by the Australian Nuclear Science and Technology Organisation (ANSTO).

ANSTO’s Synroc technology locks up radioactive elements in ‘synthetic rock’ allowing waste, like naturally occurring minerals, to be kept safely in the environment for millions of years.

Nuclear waste solution
Synroc processing technology immobilises radioactive waste in a durable, solid rock-like material for long-term storage. Credit: ANSTO

Synroc technology offers excellent chemical durability and minimises waste and disposal volumes, decreasing environmental risks and lowering emissions and secondary wastes.

ANSTO’s Synroc team is developing a waste treatment processing plant using Synroc technology for Australia’s molybdenum-99 (Mo-99) waste; Mo-99 is the parent nuclide for technetium-99m, the most widely used radioisotope in nuclear medicine. The plant will be the first of its kind, and will lead the world in managing nuclear wastes from Mo-99 production.

nuclear waste solution
ANSTO’s Synroc technology. Credit: ANSTO

Dr Daniel Gregg, leader of the Synroc waste form engineering team at ANSTO, says the plant will demonstrate Australia’s commitment to providing technology solutions to the global nuclear community.

“We hope to partner with others and build several more plants around the world using Synroc technology,” he says.

nuclear waste solution
Dr Daniel Gregg, leader of the Synroc waste form engineering team at ANSTO. Credit: ANSTO.

Gregg says several countries are looking to build new Mo-99 production facilities, and regulators want assurances that facilities will be able to treat the resulting waste streams.

“With national regulators around the world putting more and more pressure on waste producers to deal with nuclear wastes, opportunities exist for Synroc as a leading option for nuclear waste treatment.” This places Synroc and Australia in an enviable position, adds Gregg.

“Synroc is a cost-effective, environmentally responsible option to treat and appropriately dispose of nuclear wastes without leaving a burden to future generations.”

In developing the plant, the Synroc team has designed process engineering technology and a fully integrated pilot plant that can treat large volumes of waste under a continuous process mode.

The team is also collaborating with national laboratories around the world to demonstrate strategies to treat radioactive waste for commercial benefit.

The focus is on waste streams – such as the growing stockpiles of long-lived nuclear waste – that are problematic for existing treatment methods. The real advantage, says Gregg, is Synroc’s ability to immobilise these problematic waste forms.

“Waste producers are required to immobilise nuclear wastes, and Synroc and Australia will be at the forefront of waste management technology.”

– Laura Boness

nuclear waste solution
The Synroc team. Credit: ANSTO

www.ansto.gov.au/synroc

 

Ocean acidity devastates corals

Ocean acidity devastates corals

Featured image above by Kennedy Wolfe

Increasing carbon emissions in the atmosphere from activities such as the burning of fossil fuels and deforestation are changing the chemistry in the ocean. When carbon dioxide from the atmosphere is absorbed by seawater, it forms carbonic acid. The increased acidity, in turn, depletes carbonate ions – essential building blocks for coral exoskeletons.

There has been a drastic loss of live coral coverage globally over the past few decades. Many factors – such as changing ocean temperatures, pollution, ocean acidification and over-fishing – impede coral development. Until now, researchers have not been able to isolate the effects of individual stressors in natural ecosystems.

In an article published in Nature on 24 February 2016, researchers working at the University of Sydney’s One Tree Island Research Station at the southern end of the Great Barrier Reef (GBR) found that they could improve coral development by reversing the acidity of the reef waters.

“Our oceans contribute around $45 billion each year to the economy”

The international team – led by Dr Rebecca Albright from Stanford University in the USA – brought the acidity of the reef water back to what it was like in pre-industrial times by upping the alkalinity. They found that coral development was 7% faster in the less acidic waters.

“If we don’t take action on this issue very rapidly, coral reefs – and everything that depends on them, including wildlife and local communities – will not survive into the next century,” says team member Professor Ken Caldeira.

Destruction of the GBR would not only be a devastating loss because it’s considered one of the 7 Natural Wonders of the World, but would be a great economic blow for Australia.

Our oceans contribute around $45 billion each year to the economy through industries such as tourism, fisheries, shipping, marine-derived pharmaceuticals, and offshore oil and gas reserves. Marine tourism alone generates $11.6 million a year in Australia.

Impact of acidification on calcification

Corals absorb carbonate minerals from the water to build and repair their stoney skeletons, a process called calcification. Despite the slow growth of corals, calcification is a rapid process, enabling corals to repair damage caused by rough seas, weather and other animals. The process of calcification is so rapid it can be measured within one hour.

Manipulating the acidity of the ocean is not feasible. But on One Tree Island, the walls of the lagoons flanking the reef area isolate them from the surrounding ocean water at low tide – allowing researchers to investigate the effect of water acidity on coral calcification.

“We were able to look at the effect of ocean acidification in a natural setting for the first time,” says One Tree Reef researcher and PhD candidate at the University of Sydney, Kennedy Wolfe.

ocean acidity
The University of Sydney’s Kennedy Wolfe collecting water samples on One Tree Reef. Photo credit: Ken Caldeira

In the same week, an independent research team from CSIRO published results of mapping ocean acidification in the GBR. They found a great deal of variability between the 3851 reefs in the GBR, and identified the ones closest to the shore were the most vulnerable. These reefs were more acidic and their corals had the lowest calcification rates – results that supported the findings from One Tree Reef.

Marine biologists have predicted that corals will switch to a net dissolution state within this century, but the team from CSIRO found this was already the case in some of the reefs in the GBR.

“People keep thinking about [what will happen in] the future, but our research shows that ocean acidification is already having a massive impact on coral calcification” says Wolfe.

– Sue Min Liu

Oceans of wealth

Marine ecosystem impacts

Oceans cover about 71% of the Earth’s surface and contain more than 97% of the planet’s water. An estimated 80% of the world’s population lives within 100 km of the coast, and fish provide the bulk of the protein consumed by humans. But the marine ecosystem impacts of global warming on the biodiversity of ocean waters are difficult to determine.

Increasing concentrations of atmospheric carbon dioxide – the result of activities such as burning fossil fuels and deforestation – are acidifying and warming the world’s oceans.

One of the most widely documented effects of warming, according to Dr Adriana Vergés, senior lecturer in marine biology at the University of New South Wales, is the widening distribution of tropical fish as they move away from equatorial waters towards the poles, resulting in increasing numbers of tropical species appearing in temperate waters.

Oceans of wealth
Dr Adriana Vergés, Marine Ecologist, UNSW, at Gordon’s Bay during Operation Crayweed. Photo by James Sherwood, Bluebottle Films.

The marine ecosystem impacts from this warming has profound implications for the underwater environment and marine life.

“Species have three options in response to changing conditions – they die, adapt or move,” explains Vergés. “We are seeing a lot of movement. And because the rate of change is so fast, the question is: will species be able to keep up?”

The intrusion of tropical fish to temperate waters, referred to as tropicalisation, could have far-reaching repercussions for the health of these waters, their biodiversity and the industries that rely on them.

“When the tropical fish arrive, they overgraze on the seaweed and the whole system begins to shift,” says Vergés. “And we’re starting to see this in oceanic waters around northern NSW, where algal forests are disappearing.”

“In Australia, the two largest fisheries are abalone and rock lobster, whose preferred habitats are algal forests and seagrass meadows. If you lose algal forests, the abalone industry will collapse, with significant consequences for the fishing industry and the economy.”

The Abalone Council Australia Ltd estimates about 4500 tonnes of wild abalone were harvested in Australian waters last year, worth around $180 million. And according to Southern Rock Lobster Ltd, in 2011–12 rock lobster fishing produced around 3000 tonnes, worth nearly $175 million.

Vergés, however, is working to reverse some of the damage to the algal forests that threaten this industry.

Together with a number of volunteers, she is involved in Operation Crayweed, a project that aims to re-introduce crayweed – a vital habitat for lobsters, abalone and crayfish – to the waters around Sydney.

“The project is looking to bring crayweed back to the whole of Sydney. We’ve re-planted crayweed, and it has started to come back – we’re now on to our third generation. It’s a really good news environmental story, and we hope the fisheries will benefit too,” she says.

As well as helping to save the fisheries industry and reduce the marine ecosystem impacts in temperate waters around Sydney, Vergés is also involved in the Scientists in Schools national program, where she sparks enthusiasm for the wonders of the underwater world in seven and eight-year-olds.

“It’s so rewarding – children are natural scientists and they ask all the right questions. Speaking to a group of them is the closest I’ve felt to being a rock star. And they love absolutely anything to do with the sea. They are the best audience without a doubt,” says Vergés.

– Carl Williams

Extreme researcher

Extreme researcher

“Curious, stubborn, argumentative – at times,” is how climate change researcher Dr Sarah Perkins-Kirkpatrick, research fellow at UNSW’s Climate Change Research Centre (CCRC), describes herself. Qualities which, combined with her passion for science, have seen her awarded an Australian Research Council Discovery Early Career Researcher Award (DECRA).

Extreme researcher

The award recognises the importance of her work on the influence of anthropogenic climate change on extreme weather events, and is supporting her research into a particular event that receives less attention than storms, floods or droughts, but potentially has more impact on human health and the environment.

“My research explores how heatwaves have changed, why they change, and how they will change in the future,” explains Perkins-Kirkpatrick, “as well as looking at how we measure them, and how to detect the human contribution from climate change that is affecting them.”

Heatwaves are prolonged periods of unusually hot weather and, according to the website Scorcher (developed by Perkins-Kirkpatrick), they kill more people annually than any other natural disaster. They can also damage infrastructure such as power supplies, which can become overloaded during peak air-conditioner use, and rail networks, where prolonged periods of intense heat can buckle train lines.

“Heatwaves are highly regional and very complex events, and are driven by changes in background temperatures due to climate change, but also things like weather systems, soil moisture, and long-term variability like the El Nino/Southern Oscillation,” explains Perkins-Kirkpatrick.

“Measuring them is not an easy task, as good quality daily temperature data are needed. Fortunately, there are good datasets available in Australia so we have a good picture of how they are changing here. Unfortunately, this is not the case for many parts of the world, such as South America, Africa and India.”

The subject matter sounds exciting but, according to Perkins-Kirkpatrick, she spends much of her time in front of a computer screen number-crunching.

“On a day-to-day basis, I’m processing big data from observations collected from all over Australia as well as those that are done globally. We’re not meteorologists, so we don’t go out and release weather balloons. For people like me, it’s very much about processing data,” says Perkins-Kirkpatrick.

The ability to analyse, interpret and discern trends in large datasets suggests Perkins-Kirkpatrick’s maths abilities are well honed. She admits, however, that a bad decision in high school has meant playing catch-up on her maths.

“Something that I didn’t do was keep up with my maths. I was pretty good at it in school, but I just never understood why I was learning differential equations, integrals … I just didn’t see the point. Lo and behold, I hit my career now, and I’m, ‘OK, whoops’,” she says.

Perkins-Kirkpatrick partly blames her older sister for this, who advised her not to take higher maths at school: “You’ll never need it,” her sister told her. So Perkins-Kirkpatrick’s advice to her younger self would be: “Don’t listen to your older sister, she doesn’t always know best.”

Although heatwaves are synonymous with summer, they can also develop in winter. They may not pack the punch of the sweltering temperatures experienced during summer, but they can have a disastrous effect on crops such as fruit trees, by interfering with their reproductive systems and inhibiting growth.

So how has climate change influenced heatwaves in the recent past, and what does the future hold?

“We can say with a high degree of certainty that heatwaves have increased since at least the 1950s,”explains Perkins-Kirkpatrick, “and that’s the case for pretty much everywhere on the globe where we’ve got good enough measurements.”

“Canberra over the last 50 years, for example, has seen a doubling in the number of heatwave days. Melbourne hasn’t seen much of a change in the number of heatwaves, but they have become hotter over the last 60 years. And Sydney has seen the heatwave season starting up to two or three weeks earlier.”

And the future looks anything but encouraging. According to Perkins-Kirkpatrick, the frequency, intensity and magnitude of heatwaves are all increasing, with frequency increasing fastest; and what is particularly concerning, these trends are also accelerating, meaning the rate of change is increasing too.

As with other areas of climate change research, Perkins-Kirkpatrick is attempting to make predictions; so it’s hardly surprising her favourite film reflects this.

Back to the Future is pretty much my favourite movie trilogy of all time,” she says, recalling her childhood. “I recently gave a talk on how, in climate change, we look into the future, and managed to slip in a reference to Back to the Future.”

– Carl Williams

Water resources

Oceans of wealth

As the driest inhabited continent, and the country with the sixth largest coastline, Australia is poorly endowed with freshwater but fringed by huge expanses of ocean.

We often take it for granted but access to clean drinking water is a critical issue in a growing number of regions around the world. In Perth, drinking water has traditionally been sourced from surface water dams and groundwater reserves. But these supplies have significantly diminished since the 1980s through the combined impacts of rapid urban growth and protracted drought conditions. And with the southwest of Australia expected to suffer more severely than other parts of the continent from the impact of climate change, the situation is only expected to worsen.

The Water Corporation of Western Australia has been intensively exploring diversified options for boosting Perth’s drinking water, focusing on climate-independent sources. The most innovative option has been to use advanced treated wastewater to replenish groundwater resources impacted by the drying climate.

To help with their investigations, they turned to Curtin experts, including water chemist Dr Cynthia Joll. As Deputy Director of the Curtin Water Quality Research Centre (CWQRC), Joll is part of a team that researched the performance of the wastewater treatment procedures to make the process both safe and viable. Joll explains there are a large number of potential micropollutants that might need to be removed from a city’s wastewater before it can be safely recycled as drinking water. These include residual pharmaceuticals such as antibiotics, hormones and pain relief medications found in urine.

“The Centre developed the vast majority of the analytical methods for detecting these chemicals in treated wastewaters and then looked to see whether they were in secondary and tertiary – or advanced – treated wastewater,” says Joll.

The research ensured the WA Department of Health approved a pilot water recycling plant. The plant produced advanced treated wastewater of drinking quality, which was pumped into the groundwater aquifer. As a result, they completed a successful groundwater replenishment trial by the end of 2012, which was dubbed a “highly viable” option for securing WA’s drinking water supplies in the drying climate.

In late 2013, the WA government announced that groundwater replenishment was to go ahead as a major new climate-independent water source for Perth. It’s predicted that, by 2060, as much as 20% of Perth’s drinking water is likely to be supplied using this approach. The advanced treated wastewater will be used to replenish groundwater supplies that won’t be drawn for drinking purposes for decades. By the time it is added to Perth’s water supply and subjected to the drinking water treatment process, it will have been naturally filtered by passing through groundwater aquifers, Joll explains.

The CWQRC is also involved in a wide range of fundamental and applied research into other water quality issues. For Joll, who’s been fascinated by water quality chemistry for many years, it’s been particularly thrilling as a scientist to be involved in work of such high public significance. “To help bring it to full scale has been fabulous,” she says, adding that the success of the research means the work of the CWQRC is creating interest in other regions around the world that are already, or are anticipating, experiencing drinking water limitations.

Water resources
Ocean colour image from the MERIS instrument, European Space Agency (ESA).

Engineers at Curtin are also working on a water supply issue. As drinking water is pumped into cities, or wastewater is pumped out, small bubbles can form as the result of a drop in pressure from falling supplies in reservoirs or fluctuations in wastewater usage. These bubbles can damage the pumps that control supply.

Dr Kristoffer McKee, a lead researcher in Curtin’s rotating machine health monitoring project, and colleagues are analysing the vibrations made by the bubbles as they form. When the bubbles enter a pump, the pump applies pressure to the liquid, causing the bubbles to pop (implode) which releases energy. At its peak, millions of bubbles pop within milliseconds of each other.

“This popping eats away at the metal on the ‘impeller’ blades in the pump,” says McKee. As a result, this phenomenon decreases the pump’s ability to apply pressure and push the liquid in the desired direction. “It sounds like you’re pumping gravel.”

The process makes holes in the impeller blades, causing the pumps to seize up. But by the time technicians can detect the telltale sounds, the damage has already begun, says McKee. “It can cost many thousands of dollars to take a pump offline and change an impeller.” He says their approach has been to try to detect the start of the process, called cavitation, before damage becomes significant.

Building on the results of work by a University of Western Australia colleague, and in collaboration with Queensland University of Technology researchers, the Curtin University engineers placed accelerometers (sensors which measure acceleration associated with vibrations) on pumps in Queensland towns. They found they could use the data to map cavitation in 3D to show how a pump changes as cavitation occurs, says McKee.

“Once you see cavitation starting, you can stop your pump and make sure the pressure is correct,” he adds. It’s early days yet and the work needs more field testing, but the research could cut industry costs significantly.

“By 2060, as much as 20% of Perth’s drinking water is likely to be supplied by groundwater replenishment.”

Water resources
Ocean colour image from the MODIS instrument, NASA.

The push to apply research outcomes is strong across Curtin, including in the field of marine and freshwater research. Much of this work is carried out at the university under the auspices of the Australian Sustainable Development Institute, which brings Curtin researchers together on research proposals that relate to sustainable development.

“It’s all about tackling the key issues facing society,” explains the Institute’s Executive Director, Mike Burbridge. “We know that there’s increasing pressure on water and water resources. The cross-disciplinary approach is hugely important at Curtin, but especially in the sustainability space. Major innovations have come about by taking ideas from one area and applying them in another.”

An interdisciplinary approach to solving oceanographic problems has become a hallmark of Curtin’s Centre for Marine Science and Technology (CMST), which fosters research connections across the university’s Departments of Imaging and Applied Physics, Applied Geology, and Environment and Agriculture, as well as with external organisations such as the Western Australian Energy Research Alliance, the Integrated Marine Observing System and the Australian Maritime College.

“It sets us apart from other marine science groups around Australia. We seem to have carved quite a niche for doing that within the Southern Hemisphere and beyond,” says Dr Christine Erbe, Director of the CMST. Erbe is working with a multidisciplinary team at the CMST within Curtin’s physics department in the area of bioacoustics to monitor and analyse the sounds made by marine animals and people at the beach (see News, p6).

Water resources
Perth drinking water will be replenished with reclaimed and treated wastewater.

In one project, researchers are looking at how to detect sharks in the water using off-the-shelf sonar systems – the type used by private and commercial fishermen that work by emitting acoustic signals reflected off objects in the water. “Many of us have engineering and physics backgrounds and apply that to biology,” says Erbe.

Professor David Antoine, head of Curtin’s Remote Sensing and Satellite Research Group, applies his expertise in the opposite direction, combining his background as a biologist with the use of highly sophisticated physics techniques to interpret changes in ocean colour.

Ocean colour activity is affected by the amount and type of particulate matter present – from phytoplankton to sediment. This matter affects how light penetrates into, and is scattered by, water. It can be expressed in physical terms such as the absorption (how much light is taken in by the water itself, as well as the particles or dissolved substances it contains) and reflectance (how much light is being scattered back compared to how much enters at the surface).

“If you have strong absorption, the water will look darker and you will have less light coming out of the water,” explains Antoine. Less absorption results in more scattering of light and different ocean hues. Understanding the changing spectral signatures that result from this play of light enables scientists to quantify, for example, amounts of phytoplankton – the tiny plants that float in ocean surface waters and drive marine food chains.

“Like terrestrial plant life, phytoplankton contains many pigments, particularly chlorophyll,” says Antoine. “And chlorophyll absorbs preferentially in the blue range on the visible light spectrum.”

As phytoplankton concentration increases in an area of ocean, the spectral signature of the water shifts from deep to light blue, then to green or brown, indicating a very large concentration of phytoplankton and highly productive waters. This can be measured in surface waters using an instrument called a radiometer – deployable from a ship, for example, or across huge areas via satellites.

While referred to as ‘satellite imagery’, it involves more than looking at nice pictures, Antoine says. His team is doing a rigorous quantitative analysis of the measured signal on each pixel of the image to look at geophysical properties and determine attributes such as phytoplankton concentration. “That can mean millions of individual observations on just one image, and billions of them when many years of observations are collected over the entire planet.”

This kind of understanding can be applied, for example, in the local and global management of fish stocks, which rely on patterns of phytoplankton production. And because phytoplankton carry out photosynthesis – absorbing CO2 and releasing oxygen – understanding where, when and how much of this resource there is can provide vast amounts of information about the global carbon cycle. This, in turn, has major implications for managing climate change.

The potential significance of phytoplankton in this area is enormous, says Antoine, explaining that huge numbers of tiny plants floating across the world’s oceans act as a major sink for atmospheric carbon, sequestering around 50 gigatonnes of carbon per year. This is as much carbon fixation as is carried out by terrestrial plants, and the plankton uses about 500 times less biomass because it is more efficient at photosynthesis. A significant part of the CO2 released in the atmosphere by human activity is absorbed by this process and eventually sinks to the deep ocean and is buried in the ocean floor.

There’s perhaps no better indicator of how all of Earth’s habitats – marine, freshwater and terrestrial – are all intimately linked.

Karen McGhee

Small scale, big consequences

The nanoscale is so tiny it’s almost beyond comprehension. Too small for detection by the human eye, and not even discernible by most laboratory microscopes, it refers to measurements in the range of 1–100 billionths of a metre. The nanoscale is the level at which atoms and molecules come together to form structured materials.

The Nanochemistry Research Institute — NRI — conducts fundamental and applied research to understand, model and tailor materials at the nanoscale. It brings together scientists – with expertise in chemistry, engineering, computer simulations, materials and polymers – and external collaborators to generate practical applications in health, energy, environmental management, industry and exploration. These include new tests for cancer, and safer approaches to oil and gas transportation. Research ranges from government-funded exploratory science to confidential industry projects.


The NRI hosts research groups with specialist expertise in the chemical formation of minerals and other materials. “To understand minerals, it’s often important to know what is going on at the level of atoms,” explains Julian Gale, John Curtin Distinguished Professor in Computational Chemistry and former Acting Director of the NRI. “To do this, we use virtual observation – watching how atoms interact at the nanoscale – and modelling, where we simulate the behaviour of atoms on a computer.”

The mineral calcium carbonate is produced through biomineralisation by some marine invertebrates. “If we understand the chemistry that leads to the formation of carbonates in the environment, then we can look at how factors such as ocean temperature and pH can lead to the loss of minerals that are a vital component of coral reefs,” says Gale.

This approach could be used to build an understanding of how minerals are produced biologically, potentially leading to medical and technological benefits, including applications in bone growth and healing, or even kidney stone prevention and treatment.

Gale anticipates that a better understanding of mineral geochemistry may also shed light on how and where metals are distributed. “If you understand the chemistry of gold in solution and how deposits form, you might have a better idea where to look for the next gold mine,” he explains.

There are also environmental implications. “Formation of carbonate minerals, especially magnesium carbonate and its hydrates, has been proposed as a means of trapping atmospheric carbon in a stable solid state through a process known as geosequestration. We work with colleagues in the USA to understand how such carbonates form,” says Gale.

Minerals science is also relevant in industrial settings. Calcium carbonate scaling reduces flow rates in pipes and other structures in contact with water. “As an example, the membranes used for reverse osmosis in water desalination – a water purification technology that uses a semipermeable membrane to remove salt and other minerals from saline water – can trigger the formation of calcium carbonate,” explains Gale. “This results in partial blockage of water flow through the membrane, and reduced efficiency of the desalination process.”

A long-term aim of research in this area is to design water membranes that prevent these blockages. There are also potential applications in the oil industry, where barium sulphate (barite) build-up reduces the flow in pipes, and traps dangerous radioactive elements such as radium.

Another problem for exploration companies is the formation of hydrates of methane and other low molecular weight hydrocarbon molecules. These can block pipelines and processing equipment during oil and gas transportation and operations, which results in serious safety and flow assurance issues. Materials chemist Associate Professor Xia Lou leads a large research group in the Department of Chemical Engineering that is developing low-dose gas hydrates inhibitors to prevent hydrate formation. “We also develop nanomaterials for the removal of organic contaminants in water, and nanosensors to detect or extract heavy metals,” she says.

“To understand minerals, it’s often important to know what is going on at the level of the atom.”


The capacity to control how molecules come together and then disassociate offers tantalising opportunities for product development, particularly in food science, drug delivery and cosmetics. In the Department of Chemistry, Professor Mark Ogden conducts nanoscale research looking at hydrogels, or networks of polymeric materials suspended in water.

“We study the 3D structure of hydrogels using the Institute’s scanning probe microscope,” says Ogden. “The technique involves running a sharp tip over the surface of the material. It provides an image of the topography of the surface, but we can also measure how hard, soft or sticky the surface is.” Ogden is developing methods for watching hydrogels grow and fall apart through heating and cooling. “We have the capability to do that sort of imaging now, and this in situ approach is quite rare around the world,” he says.

Ogden also conducts chemical research with a group of metals known as lanthanoids, which are rare-earth elements. His recent work, in collaboration with the Australian Nuclear Science and Technology Organisation (ANSTO), discovered unique elongated nanoscale structures.

“We’ve identified lanthanoid clusters that can emit UV light and have magnetic properties,” explains Ogden. “Some of these can form single molecule magnets. A key outcome will be to link cluster size and shape to these functional properties.” This may facilitate guided production of magnetic and light-emitting materials for use in sensing and imaging technologies.

“If you understand the chemistry of gold … then you might have a better idea of where to start looking for the next gold mine.”


The NRI is working across several areas of chemistry and engineering to develop nanoscale tools for detecting and treating health conditions. Professor Damien Arrigan applies a nanoscale electrochemical approach to detecting biological molecules, also known as biosensing. He and his Department of Chemistry colleagues work at the precise junction between layered oil and water.

“We make oil/water interfaces using membranes with nanopores, some as small as 15 nanometres,” he says. “This scale delivers the degree of sensitivity we’re after.” The scientists measure the passage of electrical currents across the tiny interfaces and detect protein, which absorbs at the boundary between the two liquids. “As long as we know a protein’s isoelectric point – that is, the pH at which it carries no electrical charge – we can measure its concentration,” he explains.

The technique enables the scientists to detect proteins at nanomolar (10−6 mol/m3) concentrations, but they hope to shift the sensitivity to the picomolar (10−9 mol/m3) range – a level of detection a thousand times more sensitive and not possible with many existing protein assessments. Further refinement may also incorporate markers to select for proteins of interest. “What we’d like to do one day is measure specific proteins in biological fluids like saliva, tears or serum,” says Arrigan.

The team’s long-term vision is to develop highly sensitive point-of-need measurements to guide treatments – for example, testing kits for paramedics to detect markers released after a heart attack so that appropriate treatment can be immediately applied.

Also in the Department of Chemistry, Dr Max Massi is developing biosensing tools to look at the health of living tissues. His approach relies on tracking the location and luminescence of constructed molecules in cells. “We synthesise new compounds based on heavy metals that have luminescent properties,” explains Massi. “Then we feed the compounds to cells, and look to see where they accumulate and how they glow.”

The team synthesises libraries of designer chemicals for their trials. “We know what properties we’re after – luminescence, biological compatibility and the ability to go to the part of the cell we want,” says Massi.

For example, compounds can be designed to accumulate in lysosomes – the tiny compartments in a cell that are involved in functions such as waste processing. With appropriate illumination, images of lysosomes can then be reconstructed and viewed in 3D using a technique known as confocal microscopy, enabling scientists to assess lysosome function. Similar approaches are in development for disease states such as obesity and cancer.

Beyond detection, this technique also has potential for therapeutic applications. Massi has performed in vitro studies with healthy and cancerous cells, suggesting that a switch from detection to treatment may be possible by varying the amount of light used to illuminate the cells.

“A bit of light allows you to visualise. A lot of light will allow you to kill the cells,” explains Massi. His approach is on track for product development, with intellectual property protection filed in relation to using phosphorescent compounds to determine the health status of cells.

Improving approaches to cancer treatment is also an ongoing research activity for materials chemist Dr Xia Lou, who designs, constructs and tests nanoparticles for targeted photodynamic therapy, which aims to selectively kill tumours using light-induced reactive oxygen species.

“We construct hybrid nanoparticles with high photodynamic effectiveness and a tumour-targeting agent, and then test them in vitro in our collaborators’ laboratories,” she says. “Our primary interest is in the treatment of skin cancer. The technology has also extended applications in the treatment of other diseases.” Lou has successfully filed patents for cancer diagnosis and treatment that support the potential of this approach.


Spheres and other 3D shapes constructed at the nanoscale offer potential for many applications centred on miniaturised storage and release of molecules and reactivity with target materials. Dr Jian Liu in the Department of Chemical Engineering develops new synthesis strategies for silica or carbon spheres, or ‘yolk-shell’-structured particles. “Our main focus is the design, synthesis and application of colloidal nanoparticles including metal, metal oxides, silica and carbon,” says Liu.

Most of these colloidal particles are nanoporous – that is, they have a lattice-like structure with pores throughout. The applications of such nanoparticles include catalysis, energy storage and conversion, drug delivery and gene therapy.

“The most practical outcome of our research would be the development of new catalysts for the production of synthetic gases, or syngas,” he says. “It may also lead to new electrodes for lithium-ion batteries.” Once developed, nanoscale components for this type of rechargeable battery are expected to bring improved safety and durability, and lower costs.


Atomic Modelling matters in research

Professor Julian Gale leads a world-class research group in computational materials chemistry at the NRI. “We work at the atomic level, looking at fundamental processes by which materials form,” he says. “We can simulate up to a million atoms or more, and then test how the properties and behaviour of the atoms change in response to different experimental conditions.” Such research is made possible through accessing a petascale computer at WA’s Pawsey Centre – built primarily to support Square Kilometre Array pathfinder research.

The capacity to model the nanoscale behaviour of atoms is a powerful tool in nanochemistry research, and can give direction to experimental work. The calcium carbonate mineral vaterite is a case in point. “Our theoretical work on calcium carbonate led to the proposal that the mineral vaterite was actually composed of at least three different forms,” Gale explains. “An international team found experimental evidence which supported this idea.”

NRI Director Professor Andrew Lowe regards this capacity as an asset. “Access to this kind of atomic modelling means that our scientists can work within a hypothetical framework to test whether a new idea is likely to work or not before they commit time and money to it,” he explains.

Scientists at Curtin’s Nanochemistry Research Institute investigate minerals at an atomic level, which can, for example, build an understanding of mineral loss in coral reefs.
Scientists at Curtin’s Nanochemistry Research Institute investigate minerals at an atomic level, which can, for example, build an understanding of mineral loss in coral reefs.

New direction

Formally established in 2001, the Nanochemistry Research Institute began a new era in 2015 through the appointment of Professor Andrew Lowe as Director. Working under his guidance are academic staff and postdoctoral fellows, as well as PhD, Honours and undergraduate science students.

An expert in polymer chemistry, Lowe’s research background adds a new layer to the existing strong multidisciplinary nature of the Institute. “Polymers have the potential to impact on every aspect of fundamental research,” he says. “This will add a new string to the bow of Curtin University science and engineering, and open new and exciting areas of research and collaboration.”

Polymers are a diverse group of materials composed of multiple repeated structural units connected by chemical bonds. “My background is in water-soluble polymers and smart polymers,” explains Lowe. “These materials change the way they behave in response to their external environment – for example, a change in temperature, salt concentrations, pH or the presence of other molecules including biomolecules. Because the characteristics of the polymeric molecules can be altered in a reversible manner, they offer potential to be used in an array of applications, including drug delivery, catalysis and surface modification.”

Lowe has particular expertise in RAFT dispersion polymerisation, a technique facilitating molecular self-assembly to produce capsule-like polymers in solution. “This approach allows us to make micelles, worms and vesicles directly,” he says, describing the different physical forms the molecules can take. “It’s a novel and specialised technique that creates high concentrations of uniformly-shaped polymeric particles at the nanoscale.” Such polymers are candidates for drug delivery and product encapsulation.

Sarah Keenihan

Prime Minister’s Prizes for Science

Australian scientists and science educators have been honoured at the annual Prime Minister’s Prizes for Science. The awards, introduced in 2000, are considered Australia’s most prestigious and highly regarded awards, and are given in recognition of excellence in scientific research, innovation and science teaching.

The awards acknowledge and pay tribute to the significant contributions that Australian scientists make to the economic and social betterment in Australia and around the world, as well as inspiring students to take an interest in science.

Previous winners include Professor Ryan Lister (Frank Fenner Prize for Life Scientist of the Year in 2014) for his work on gene regulation in agriculture and in the treatment of disease and mental health, and Debra Smith (Prime Minister’s Prize for Excellence in Science Teaching in Secondary Schools in 2010) for her outstanding contribution in redefining how science is taught in Queensland and across the rest of Australia.

This year’s winners were announced by the Prime Minister, Malcolm Turnbull and Christopher Pyne, Minister for Industry, Innovation and Science at a press conference at Parliament House in Canberra yesterday, which was also attended by the Chief Scientist, Professor Ian Chubb.

The 2015 recipients are:

This year’s winner of the Prime Minister’s Prize for Science is Professor Graham Farquhar, Distinguished Professor of the Australian National University’s (ANU) Research School of Biology , a Chief Investigator of the Australian Research Council’s (ARC) Centre of Excellence for Translational Photosynthesis, and leader of the Science and Industry Endowment Fund project on Forests for the Future: making the most of a high [CO2] world.

Professor Farquhar’s models of plant biophysics has led to a greater understanding of cells, whole plants and forests, as well as the creation of new water-efficient wheat varieties. His work has transformed our understanding of the world’s most important biological reaction: photosynthesis.

Farquhar’s most recent research on climate change is seeking to determine which trees will grow faster in a carbon dioxide enriched atmosphere. “Carbon dioxide has a huge effect on plants. My current research involves trying to understand why some species and genotypes respond more to CO2 than others,” he says. And he and colleagues have uncovered a conundrum: global evaporation rates and wind speeds over the land are slowing, which is contrary to the predictions of most climate models. “Wind speed over the land has gone down 15% in the last 30 years, a finding that wasn’t predicted by general circulation models we use to form the basis of what climate should be like in the future,” he says. This startling discovery means that climate change may bring about a wetter world.

“Our world in the future will be effectively wetter, and some ecosystems will respond to this more than others.”

Professor Farquhar will also receive $250,000 in prize money. Looking forward he is committed to important projects, such as one with the ARC looking at the complex responses of plant hydraulics under very hot conditions.

“It’s important to understand if higher temperatures will negatively affect the plants in our natural and managed ecosystems, and if higher temperatures are damaging, we need to understand the nature of the damage and how we can minimise it.”

You can find out more about the 2015 winners including profiles, photos and videos here.

– Carl Williams

past Australian environments

Tracing change: past Australian environments

Curtin University researchers are creating snapshots of past Australian environments using the minute traces left behind by plants, animals and microorganisms. Dr Svenja Tulipani and Professor Kliti Grice from the WA-Organic and Isotope Geochemistry Centre looked for clues in sediments at Coorong National Park, South Australia, to find out how this system of coastal lagoons has changed since European settlement.

The Coorong Wetland is an ecologically significant area, but human water management practices and severe drought have led to increased salinity and less biodiversity, Tulipani explains. By examining microscopic molecular fossils, known as biomarkers, and their stable carbon and hydrogen isotopes, the researchers have identified the types of organisms that previously lived in the area, uncovering evidence for changes in water level and salinity due to changes in carbon and hydrogeological cycles.

“We found significant changes that started in the 1950s, at the same time that water management was intensified,” Tulipani says. “It affects the whole food web, including the birdlife and ecology,” Grice adds.


“We found significant changes that started in the 1950s, which was the same time that the water management was intensified.”


The project used Curtin’s world-class instruments for gas chromatography-mass spectrometry, as well as a new instrument that is capable of even better analysis.

“It allows for a new technique that reduces sample preparation time as the organic compounds can be analysed in more complex mixtures, such as whole oils or extracts of sediments and modern organisms,” Tulipani explains. “We can also identify more compounds this way.”

Tulipani has been able to use samples taken from the remote Kimberley region to examine an extinction event around 380 million years ago. Grice says the techniques are particularly relevant to the evolution of primitive vascular plants during this time period.

“In some locations of the Pilbara region, you can look at very early life from more than 2.5 billion years ago. You can go back practically to the beginning of life.”

Michelle Wheeler

Continents collide

Continents collide

Collecting rock samples at 5200 m on a recent trip to the Tibetan Plateau, Professor Simon Wilde, from the Department of Applied Geology at Curtin University, was pleased to have avoided the symptoms of altitude sickness. The last time he conducted fieldwork in a similar environment had been about 20 years before in Kyrgyzstan, Central Asia, and he’d managed then to also avoid altitude headaches. Nonetheless, he says, Tibet was tough. Due to the atmospheric conditions, the Sun was intensely strong and hot but the ground was frozen. “It’s a strange environment,” he says.

Wilde was invited by scientists at the Guangzhou Institute of Geochemistry, part of the Chinese Academy of Sciences, to collect volcanic rock samples at the Tibetan site. The region is geologically significant because it is where the Indian tectonic plate is currently “driving itself under the Eurasian plate”, he explains. During their recent field trip, Wilde and his Chinese colleagues collected about 100 kg of rocks, which were couriered back to Guangzhou and Curtin for study. The researchers will be drawing on a variety of geochemistry techniques to analyse the material as they try to paint a picture of what happens when two continents collide, gaining insight into the evolution of Earth’s crust.

“We’re trying to unravel a mystery in a sense,” says Wilde. “We don’t have the full information, so we’re trying to use everything we can to build up the most likely story.”

The Guangzhou geochemists will be analysing trace elements in the rock samples to uncover information about their origins and formation. Back at Curtin, Wilde is working on determining the age of zircon crystals collected from the site, using a technique called isotopic analysis. This involves measuring the ratios of atoms of certain elements with different numbers of neutrons (isotopes) to reveal the age of crystals based on known rates of radioactive decay.

It’s work that’s providing a clearer picture of Earth’s early crustal development and is an area in which Wilde is internationally renowned (see profile, p18).

Gaining an idea of the past distribution of Earth’s continental crust has implications for the resources sector, Wilde explains. “It’s important for people working in metallogeny [the study of mineral deposits] to see where pieces of the crust have perhaps broken off and been redistributed,” he says. “There could be continuation of a mineral belt totally removed and on another continent.”


Continents collide: Copper in demand

Professor Brent McInnes, Director of the John De Laeter Centre for Isotope Research, is also interested in the collision of tectonic plates – to help supply China’s increasing demand for domestic copper. “The rapid urbanisation of China since the 1990s has created a significant demand for a strategic supply of domestic copper, used in air conditioners, electrical motors and in building construction,” explains McInnes. Most of the world’s supply of copper comes from a specific mineral deposit type known as porphyry systems, which are the exposed roots of volcanoes formed during tectonic plate collisions.

McInnes’ research involves taking samples from drill cores, rock outcrops and mine exposures in mountainous regions around the world to be studied back in the lab. Specifically, he and his research team are able to elucidate information about the depth, erosion and uplift rate of copper deposits using a technique called thermochronology – a form of dating that takes into account the ‘closure temperature’, or temperature below which an isotope is locked into a mineral. Using this information, scientists can reveal the temperature of an ore body at a given time in its geological history. This, in turn, provides information with important implications for copper exploration, such as the timing and duration of the mineralisation process, as well as the rate of exposure and erosion.

“Institutions such as the Chinese Academy of Sciences have been awarded large research grants to investigate porphyry copper deposits in mountainous terrains in southern and western China, and have sought to form collaborations with world-leading researchers in the field,” says McInnes.

“We’re trying to unravel a mystery, in a sense. We don’t have the full information, so we’re trying to use everything we can to build up the most likely story.”


Continents collide: Interpreting species loss

Professor Kliti Grice, founding Director of the WA-Organic and Isotope Geochemistry Centre, researches mass extinctions. As an organic and isotope geochemist, Grice (see profile, p12) studies molecular fossils in rock sediments from 2.3 billion years ago through to the present day, also known as biomarkers. These contain carbon, oxygen, hydrogen, nitrogen, or sulphur – unlike the rocks, minerals and trace elements studied by inorganic geochemists Wilde and McInnes.

Grice uses tools such as tandem mass spectrometry, which enables the separation and analysis of ratios of naturally occurring stable isotopes to reconstruct ancient environments. For example, carbon has two stable isotopes – carbon-12 and carbon-13 – and one radioactive isotope, carbon-14. The latter is commonly used for dating ancient artefacts based on its rate of decay. A change in carbon-12 to carbon-13 ratios in plant molecules, however – along with a change in hydrogen – can reveal a shift in past photosynthetic activity.

Grice has uncovered the environmental conditions during Earth’s five mass extinction events and has found there were similar conditions in the three biggest extinctions – the end-Permian at 252 million years ago (Ma), end-Triassic at 201 Ma and end-Devonian at 374 Ma. Among other things, there were toxic levels of hydrogen sulphide in the oceans. Grice discovered this by studying molecules from photosynthetic bacteria, which were found to be using toxic hydrogen sulphide instead of water as an electron donor when performing photosynthesis, thereby producing sulphur instead of oxygen.

“The end-Permian and end-Triassic events were almost identical in that they are both associated with massive volcanism, rising sea levels and increased run-off from land, leading to eutrophication,” Grice explains. Eutrophication occurs when introduced nutrients in water cause excessive algal growth, reducing oxygen levels in the environment. “There were no polar ice caps at these times, and the oceans had sluggish circulations,” she adds.

In 2013, Grice co-authored a paper in Nature Scientific Reports documenting that fossils in the Kimberley showed that hydrogen sulphide plays a pivotal role in soft tissue preservation. This modern day insight is valuable for the resources sector because these ancient environments provided the conditions for many major mineral and petroleum systems. “When you have these major extinction events associated with low oxygen allowing the organic matter to be preserved – along with certain temperature and pressure conditions over time – the materials break down to produce oil and gas,” Grice says.

For example, the Permian-Triassic extinction event – during which up to 95% of marine and 70% of terrestrial species disappeared – produced several major petroleum reserves. That includes deposits in Western Australia’s Perth Basin, says Grice, “and probably intervals in the WA North West Shelf yet to be discovered.”

Gemma Chilton

Supercontinent Revolution

Professor of geology at Curtin University Dr Zheng-Xiang Li considers himself a very lucky man. Born in a village in Shandong Province, East China, he fondly remembers the rock formations in the surrounding hills. But he was at school during the end of the Cultural Revolution – a time when academic pursuit was frowned upon and it was very hard to find good books to read. “Fortunately, I had some very good teachers who encouraged my curiosity,” recalls Li.

He went on to secure a place at the prestigious Peking University to study geology and geophysics. And in 1984, when China’s then leader Deng Xiaoping sent a select number of students overseas, Li took the opportunity to study for a PhD in Australia. With an interest in plate tectonics and expertise in palaeomagnetism, he’s since become an authority on supercontinents.

It is widely accepted that the tectonic plates – which carry the continents – are moving, and that a supercontinent, Pangaea, existed 320–170 million years ago. Li’s research
is aimed at understanding how ‘Earth’s engine’ drives the movement of the plates.

His work has been highly influential, showing that another supercontinent, Rodinia, formed about 600 million years before Pangaea. And evidence is mounting that there was yet another ancient supercontinent before that, known as Nuna, which assembled about 1600 million years ago.

Li suspects there is a cycle wherein supercontinents break up and their components then disperse around the globe, before once again coming together as a new supercontinent.

“The supercontinent cycle is probably around 600 million years. We are in the middle of a cycle: halfway between Pangaea and a fresh supercontinent,” he says.

“We are at the start of another geological revolution. Plate tectonics revolutionised geology in the 1960s. I think we are now in the process of another revolution,” Li adds, undoubtedly excited by his work.

“The meaning of life can be described by three words beginning with ‘F’ – family, friends and fun,” he says. “And for me, work falls in the fun part.”

Clare Pain

A Remarkable Career

Compelled to move to Perth in 1972 because “there were no meaningful jobs in geoscience in the UK at the time”, John Curtin Distinguished Professor Simon Wilde carved out an illustrious career in the decades that followed his PhD at the University of Exeter.

“My work is largely focused on Precambrian geology, divided between Northeast Asia, the Middle East, India and Western Australia,” explains Wilde, from the Department of Applied Geology at Curtin University. In 2001, Wilde received extensive media attention for his discovery of the oldest object ever found on Earth – a tiny 4.4 billion-year-old zircon crystal dug up in the Jack Hills region of Western Australia.

His zircon expertise and vast knowledge of early-Earth crustal growth and rock dating have taken him to many of the key areas in the world where Archean (more than 2.5 billion-year-old) rocks are exposed. Of these international investigations, perhaps the most impressive have been his contributions to understanding the geology of North China. Part of the first delegation of foreign researchers to visit the Aldan Shield in Siberia in 1988, along with several top Chinese geoscientists, Wilde has since fostered friendships and collaborations with colleagues in five top Chinese universities, as well as the Chinese Academy of Sciences and the Chinese Academy of Geological Sciences.

“I have been to China more than 100 times and published more than 100 papers on Chinese geology, including major reviews of the North China Craton and the Central Asian Orogenic Belt, where I am a recognised expert.”

The Institute for Geoscience Research (TIGeR) at Curtin University is designated as a high-impact Tier 1 centre – the most distinguished research grouping within the university – providing a focus for substantial activity across a specific field of study. Wilde stepped down as Director in February 2015, having championed TIGeR research, provided advice and allocated funding for the eight years since the Institute was formed. He is confident that his research and the foundations he has built for the centre will continue to support innovative geoscience and exciting collaboration initiatives – in which he is certain to continue playing a major part.

Ben Skuse

Fuelling the future

The complex engineering that drives renewable energy innovation, global satellite navigation, and the emerging science of industrial ecology is among Curtin University’s acknowledged strengths. Advanced engineering is crucial to meeting the challenges of climate change and sustainability. Curtin is addressing these issues in several key research centres.

Bioenergy, fuel cells and large energy storage systems are a focus for the university’s Fuels and Energy Technology Institute (FETI), launched in February 2012. The institute brings together a network of more than 50 researchers across Australia, China, Japan, Korea, Denmark and the USA, and has an array of advanced engineering facilities and analytic instruments. It also hosts the Australia-China Joint Research Centre for Energy, established in 2013 to address energy security and emissions reduction targets for both countries. 

Curtin’s Sustainable Engineering Group (SEG) has been a global pioneer in industrial ecology, an emerging science which tracks the flow of resources and energy in industrial areas, measures their impact on the environment and works out ways to create a “circular economy” to reduce carbon emissions and toxic waste.

And in renewable energy research, Curtin is developing new materials for high temperature fuel cell membranes, and is working with an award-winning bioenergy technology that will use agricultural crop waste to produce biofuels and generate electricity.


Solar’s big shot

Curtin’s hydrogen storage scientists are involved in one of the world’s biggest research programs to drive down the cost of solar power and make it competitive with other forms of electricity generation such as coal and gas. They are contributing to the United States SunShot Initiative – a US$2 billion R&D effort jointly funded by the US Department of Energy and private industry partners to fast track technologies that will cut the cost of solar power, including manufacturing for solar infrastructure and components.

SunShot was launched in 2011 as a key component of President Obama’s Climate Action Plan, which aims to double the amount of renewable energy available through the grid and reduce the cost of large-scale solar electricity by 75%.

Professor Craig Buckley, Dean of Research and Professor of Physics at Curtin’s Faculty of Science and Engineering, is the lead investigator on an Australian Research Council Linkage Project on energy storage for Concentrating Solar Power (CSP), and a chief investigator with the SunShot CSP program. His team at Curtin’s Hydrogen Storage Research Group is using metal hydrides to develop a low cost hydrogen storage technology for CSP thermal energy plants such as solar power towers.

CSP systems store energy in a material called molten salts – a mixture of sodium nitrate and potassium nitrate, which are common ingredients in plant fertilisers. These salts are heated to 565°C, pumped into an insulated storage tank and used to produce steam to power a turbine to generate electricity. But it’s an expensive process. The 195 m tall Crescent Dunes solar power tower in Nevada – one of the world’s largest and most advanced solar thermal plants – uses 32,000 tonnes of molten salt to extend operating hours by storing thermal energy for 10 hours after sunset.

Metal hydrides – compounds formed by bonding hydrogen with a material such as calcium, magnesium or sodium – could replace molten salts and greatly reduce the costs of building and operating solar thermal power plants. Certain hydrides operate at higher temperatures and require smaller storage tanks than molten salts. They can also be reused for up to 25 years.

At the Nevada plant, molten salt storage costs an estimated $150 million, – around 10–15% of operation costs, says Buckley. “With metal hydrides replacing molten salts, we think we can reduce that to around $50–$60 million, resulting in significantly lower operation costs for solar thermal plants,” he says. “We already have a patent on one process, so we’re in the final stages of testing the properties of the process for future scale-up. We are confident that metal hydrides will replace molten salts as the next generation thermal storage system for CSP.”


From biomass to fuel

John Curtin Distinguished Professor Chun-Zhu Li is lead researcher on a FETI project that was awarded a grant of $5.2 million by the Australian Renewable Energy Agency in 2015 to build a pilot plant to test and commercialise a new biofuel technology. The plant will produce energy from agricultural waste such as wheat straw and mallee eucalypts from wheatbelt farm forestry plantations in Western Australia.

“These bioenergy technologies will have great social, economic and environmental benefits,” says Li. “It will contribute to the electricity supply mix and also realise the commercial value of mallee plantations for wheatbelt farmers. It will make those plantations an economically viable way of combating the huge environmental problem of dryland salinity in WA.”

Li estimates that WA’s farms produce several million tonnes of wheat straw per year, which is discarded as agricultural waste. Biomass gasification is a thermochemical process converting biomass feedstock into synthesis gas (syngas) to generate electricity using gas engines or other devices.

One of the innovations of the biomass gasification technology developed at FETI is the destruction of tar by char or char-supported catalysts produced from the biomass itself. Other biomass gasification systems need water-scrubbing to remove tar, which also generates a liquid waste stream requiring expensive treatment, but the technology developed by Li’s team removes the tar without the generation of any wastes requiring disposal. This reduces construction and operation costs and makes it an ideal system for small-scale power generation plants in rural and remote areas.

Li’s team is also developing a novel technology to convert the same type of biomass into liquid fuels and biochar. The combined benefits of these bioenergy/biofuel technologies could double the current economic GDP of WA’s agricultural regions, Li adds. future scale-up. We are confident that metal hydrides will replace molten salts as the next generation thermal storage system for CSP.”


Keeping renewables on grid

Professor Syed Islam is a John Curtin Distinguished Professor with Curtin’s School of Electrical Engineering and Computing. It’s the highest honour awarded by the university to its academic staff and recognises outstanding contributions to research and the wider community. Islam has published widely on grid integration of renewable energy sources and grid connection challenges. In 2011, he was awarded the John Madsen Medal by Engineers Australia for his research to improve the prospect of wind energy generation developing grid code enabled power conditioning techniques.

Islam explains that all power generators connected to an electricity network must comply with strict grid codes for the network to operate safely and efficiently. “The Australian Grid Code specifically states that wind turbines must be capable of uninterrupted operation, and if electrical faults are not immediately overridden, the turbines will be disconnected from the grid,” he says.

“Wind energy is a very cost effective renewable technology. But disturbances and interruptions to power generation mean that often wind farms fall below grid code requirements, even when the best wind energy conversion technology is being used.”

Islam has led research to develop a system that allows a faster response by wind farm voltage control technologies to electrical faults and voltage surges. It has helped wind turbine manufacturers meet grid regulations, and will also help Australia meet its target to source 20% of electricity from renewable energy by 2020.

Islam says micro-grid technology will also provide next-generation manufacturing opportunities for businesses in Australia. “There will be new jobs in battery technology, in building and operating micro-grids and in engineering generally,” he says.

“By replacing the need for platinum catalysts, we can make fuel cells much cheaper and more efficient, and reduce dependence on environmentally damaging fossil fuels.”


Cutting fuel cell costs

Professor San Ping Jiang from FETI and his co-researcher Professor Roland De Marco at University of the Sunshine Coast in Queensland recently received an Australian Research Council grant of $375,000 to develop a new proton exchange membrane that can operate in high-temperature fuel cells. It’s a materials engineering breakthrough that will cut the production costs of fuel cells, and allow more sustainable and less polluting fuels such as ethanol to be used in fuel cells.

Jiang, who is based at Curtin’s School of Chemical and Petroleum Engineering, has developed a silica membrane that can potentially operate at temperatures of up to 500°C. Fuel cells directly convert chemical energy of fuels suchas hydrogen, methanol and ethanol into electricity and provide a lightweight alternative to batteries, but they are currently limited in their application because conventional polymer-based proton exchange membranes perform most efficiently at temperatures below 80°C. Jiang has developed a membrane that can operate at 500°C using heteropoly acid functionalised mesoporous silica – a composite that combines high proton conductivity and high structural stability to conduct protons in fuel cells. His innovation also minimises the use of precious metal catalysts such as platinum in fuel cells, reducing the cost.

“The cost of platinum is a major barrier to the wider application of fuel cell technologies,” Jiang says. “We think we can reduce the cost significantly, possibly by up to 90%, by replacing the need for platinum catalysts. It will make fuel cells much cheaper and more efficient, and reduce dependence on environmentally damaging fossil fuels.”

He says the high temperature proton exchange membrane fuel cells can be used in devices such as smartphones and computers, and in cars, mining equipment and communications in remote areas.


Doing more with less

The SEG at Curtin University has been involved in energy efficiency and industrial analysis for just over 15 years. It’s been a global leader in an emerging area of sustainability assessment known as industrial ecology, which looks at industrial areas as ‘ecosystems’ that can develop productive exchanges of resources.

Associate Professor Michele Rosano is SEG’s Director and a resource economist who has written extensively on sustainability metrics, charting the life cycles of industrial components, carbon emission reduction and industrial waste management. They’re part of a process known as industrial symbiosis – the development of a system for neighbouring industries to share resources, energies and by-products. “It’s all about designing better industrial systems, and doing more with less,” Rosano says.

Curtin and SEG have been involved in research supported by the Australian’s Government’s Cooperative Research Centres Program to develop sustainable technologies and systems for the mineral processing industry at the Kwinana Industrial Area, an 8 km coastal industrial strip about 40 km south of Perth. The biggest concentration of heavy industries in Western Australia, Kwinana includes oil, alumina and nickel refineries, cement manufacturing, chemical and fertiliser plants, water treatment utilities and a power station that uses coal, oil and natural gas.

Rosano says two decades of research undertaken by Curtin at Kwinana is now recognised as one of the world’s largest and most successful industrial ecology projects. It has created 49 industrial symbiosis projects, ranging from shared use of energy and water to recovery and reuse of previously discarded by-products.

“These are huge and complex projects which have produced substantial environmental and economic benefits,” she says. “Kwinana is now seen as a global benchmark for the way in which industries can work together to reduce their footprint.”

An example of industrial synergies is waste hydrochloric acid from minerals processing being reprocessed by a neighbouring chemical plant for reuse in rutile quartz processing. The industrial ecology researchers looked at ways to reuse a stockpile of more than 1.3 million tonnes of gypsum, which is a waste product from the manufacture of phosphate fertiliser and livestock feeds. The gypsum waste is used by Alcoa’s alumina refinery at Kwinana to improve soil stability and plant growth in its residue areas.

The BP oil refinery at Kwinana also provides hydrogen to fuel Perth’s hydrogen fuel-cell buses. The hydrogen is produced by BP as a by-product from its oil refinery and is piped to an industrial gas facility that separates, cleans and pressurises it. The hydrogen is then trucked to the bus depot’s refuelling station in Perth.

Rosano says 21st century industries “are serious about sustainability” because of looming future shortages of many raw materials, and also because research has demonstrated there are social, economic and environmental benefits to reducing greenhouse emissions.

“There is a critical need for industrial ecology, and that’s why we choose to focus on it,” she says. “It’s critical research that will be needed to save and protect many areas of the global economy in future decades.”


in text

Planning for the future

Research by Professor Peter Teunissen and Dr Dennis Odijk at Curtin’s Department of Spatial Sciences was the first study in Australia to integrate next generation satellite navigation systems with the commonly used and well-established Global Positioning System (GPS) launched by the United States in the 1990s.

Odijk says a number of new systems are being developed in China, Russia, Europe, Japan, and India, and it’s essential they can interact successfully. These new Global Navigation Satellite Systems (GNSS) will improve the accuracy and availability of location data, which will in turn improve land surveying for locating mining operations and renewable energy plants.

“The new systems have an extended operational range, higher power and better modulation. They are more robust and better able to deal with challenging situations like providing real-time data to respond to bushfires and other emergencies,” says Odijk.

“When these GNSS systems begin operating over the next couple of years, they will use a more diverse system of satellites than the traditional GPS system. The challenge will be to ensure all these systems can link together.”

Integrating these systems will increase the availability of data, “particularly when the signals from one system might be blocked in places like open-pit mines or urban canyons – narrow city streets with high buildings on both sides.”

Teunissen and Odijk’s research on integrating the GNSS involves dealing with the complex challenges of comparing estimated positions from various satellites, as well as inter-system biases, and developing algorithms. The project is funded by the Cooperative Research Centre for Spatial Information, and includes China’s BeiDou Navigation Satellite System, which is now operating across the Asia-Pacific region.

Rosslyn Beeby

Immense Vision

In any given week, Tingay might be discussing a galaxy census, monitoring solar flares for the US Air Force or investigating the beginning of the universe.

Tingay is the Director of the Curtin Institute of Radio Astronomy at Curtin University, Deputy Director of the International Centre for Radio Astronomy Research and Director of the Murchison Widefield Array (MWA). Still less than two years old, the MWA has already entered uncharted territory, collecting data that will uncover the birth of stars and galaxies in the very early universe and produce an unprecedented galaxy catalogue of half a million objects in the sky. The MWA could also one day provide early warning of destructive solar flares that can knock out the satellite communications we rely on.

“To date, we’ve collected upwards of four petabytes of data and all the science results are starting to roll out in earnest now,” he says.

“It’s an amazing feeling for the team to have pulled together, delivered the instrument, and to do things that no one ever expected we could do when we did the planning.”

The project sees Curtin University lead a prestigious group of partners, including Harvard University and MIT, in four countries. And while the MWA is a powerful telescope in its own right, it paves the way for what is arguably the biggest science project on the planet – the Square Kilometre Array (SKA).

The promise of this multi-billion dollar telescope, which will be built across Western Australia and South Africa, drove Tingay to move to Perth seven years ago. “I like to be close to the action, building and operating telescopes, and using them to do interesting experiments that no one else has done before – in close physical proximity.”

His team of 55 researchers at Curtin University are working on the astrophysics, engineering and ICT challenges of the SKA.

“Curtin is an amazing place to work,” he says. “It’s focused on a few very high-impact developments and making sure that they’re properly funded and resourced.

“Periodically, I sit down and think: ‘Where else in the world would I rather be?’ and every time I conclude that for radio astronomy Curtin University in Perth is the best place to be.”

Michelle Wheeler

Across the skies

Today NASA announced the paradigm shifting discovery of flowing water on Mars. This extraterrestrial salty water bodes well for a water cycle on Mars, and potential hosting of Martian life. What mysteries lie on Mars, we may find out soon – but for the infinite mysteries that lie beyond – we have the Earth’s largest radio telescope, the Square Kilometre Array (SKA), manned by the Curtin Institute of Radio Astronomy.

The engineering challenges behind building the world’s biggest radio telescope are vast, but bring rewards beyond a better understanding of the universe.

Since its inception, the Curtin Institute of Radio Astronomy has established itself as an essential hub for astronomy research in Australia. Known as CIRA, the organisation brings together engineering and science expertise in one of Australia’s core research strengths: radio astronomy.

Through CIRA’s research node, Curtin is an equal partner in the International Centre for Radio Astronomy Research (ICRAR) with the University of Western Australia. Curtin also contributes staff to the Australian Research Council Centre of Excellence for All-sky Astrophysics. One of the core strengths of CIRA is the construction of next generation telescopes. These include work on one of the world’s biggest scientific endeavours and the SKA.

CIRA’s Co-Directors, Professors Steven Tingay and Peter Hall, were on the team who pitched Australia’s successful bid to host part of the SKA – a radio telescope that will stretch across Australia and Africa. The SKA’s two hosting nations were announced in May 2012 and the project forms the main focus of research at CIRA. And for good reason: the SKA-low – a low-frequency aperture array consisting of a quarter of a million individual antennas in its first phase – will be built in Western Australia at the Murchison Radio-astronomy Observatory (MRO), about 800 km north of Perth.

The near-flat terrain and lack of radio noise from electronics and broadcast media in this remote region allow for great sky access and ease of construction. At Phase 1, SKA-low will cover the project’s lowest-frequency band, from 50 MHz up to 350 MHz – with antennas covering approximately 2 km at the core, stretching out to 50 km along three spiral arms.

“Out of 10 organisations in a similar number of countries, CIRA is the largest single contributor to the low frequency array consortium,” says Hall, the Director responsible for engineering at CIRA.

Far from a traditional white dish radio telescope, which mechanically focuses beams, the SKA-low will be a huge array of electronic antennas with no moving parts. Its programmable signal processors will be able to focus on multiple fields of view and perform several different processes simultaneously. “You can point at as many directions as you want with full sensitivity – that’s the beauty of the electronic approach,” says Senior Research Fellow Dr Randall Wayth, an astronomer and signal processing specialist at CIRA.


One of the major scientific goals of SKA-low is to help illuminate the events of the early universe, particularly the stage of its formation known as the ‘epoch of reionisation’. Around 13 billion years ago, all matter in the early universe was ionised by radiation emitted from the earliest stars. The record of this reionisation carries with it telltale radio signatures that reveal how those early stars formed and turned into galaxies. Observing this directly for the first time will allow astronomers to unlock fundamental new physics.

“To see what’s going on there at the limits of where we can see in time and space, you have to have telescopes that are sensitive to wide-field, diffuse structures, and that are exquisitely calibrated. You have to be able to reject the foreground universe and local radio frequency interference,” says Hall. This sensitivity to diffuse structures will make SKA-low and its precursor, the Murchison Widefield Array (MWA), essential instruments in studying the epoch of reionisation.

The SKA-low will also be important in studying time domain astronomy, which consists of phenomena occurring over a vast range of timescales. One example is the field of pulsar study. Pulsars are incredibly dense rotating stars that, much like a lantern in a lighthouse, emit a beam of radiation at extremely regular intervals. This regularity makes pulsars useful tools for a variety of scientific applications, including accurate timekeeping.

By the time the radio signal from a distant pulsar travels across space and reaches Earth, it is dispersed. But with the right telescope, you can calibrate against this dispersion, and trace back the original regular signal.

“One of the great things you can do with a low frequency telescope such as the SKA-low is get a very good look at the pulsar signal,” says Hall. “As well as stand-alone SKA-low pulsar studies, the measurement of hour-to-hour dispersion changes can be fed to telescopes at higher frequencies, vastly improving their ability to do precision pulsar timing.”

“It’s a big advantage having the critical mass of people in this building to make things happen.”


It’s not just astronomy research that is benefiting from the construction of the SKA-low and its precursors (two precursor telescopes are in place at the MRO: the MWA and the Australian Square Kilometre Array Precursor telescope, ASKAP). In order to make the most out of the aperture array telescopes, some fundamental engineering challenges need to be solved. Challenges such as how to characterise the antennas to ensure that they meet design specifications, or how to design a photovoltaic system to power the SKA without producing too many unwanted emissions. Solving these problems requires both a deep understanding of the fundamental physics involved as well as knowledge of how to engineer solutions around those physics.

The projected construction timeframe for SKA-low is 2018–2023, but there is already infrastructure in place to begin testing its design and operation. Consisting of 2048 fixed dual-polarisation dipole antennas arranged in 128 ‘tiles’, the MWA boasts a wide field of view of several hundred square degrees at a resolution of arcminutes. It has provided insight into the challenges that will arise during the full deployment of SKA-low, not the least of which is managing the volume of data resulting from the measurements.

“The MWA already has a formidable data rate. We transmit 400 megabits per second down to Perth, and processing that is a substantial challenge,” says Wayth. The challenge is a necessary one, as the stream of data that comes from a fully operational SKA-low will be orders of magnitude larger.

“While doing groundbreaking science, the MWA is just manageable for us at the moment in terms of data rate. It teaches us what we have to do to handle the data.”

Continued CIRA developments at the MRO have included the construction of an independently commissioned prototype system, the Aperture Array Verification System 0.5 (AAVS0.5). The results from testing it in conjunction with the MWA surprised the engineers and scientists. “Engineers know that building even a tiny prototype teaches you a lot,” says Hall.

In their case, some carefully-matched cables turned out to be mismatched in their electrical delay lengths. Using the AAVS0.5, they have already been able to improve the MWA calibration. “We were able to feedback that engineering science into the MWA astronomy calibration model, and we now have a better model to calibrate and clean the images from the MWA,” says Hall.

Following the success of AAVS0.5, over the next two years CIRA will be leading the construction of the much larger AAVS1, designed to mimic a full SKA-low station.


Developing the SKA-low and its precursors is an huge effort, demanding the best in astrophysics, engineering and data processing. CIRA is uniquely positioned to accomplish this feat, with a large research staff, fully equipped engineering laboratory and access to the nearby Pawsey Supercomputing Centre for data processing. “CIRA has astronomers and engineers, as well as people who do both. We have all the skills to do these things in-house,” says Hall.

“It’s a big advantage having the critical mass of people in this building to make things happen,” says Wayth. “It’s a rare case where the sum of the parts really is greater than the whole.”

Opportunities for students and early-career researchers to engage in the project are already underway. Dozens of postgraduate research projects commencing in 2015 will involve the MWA, AAVS and ASKAP directly. Topics range from detecting the radio signature of fireballs to investigating the molecular chemistry of star formation. As well as producing novel scientific outcomes, these projects will feed valuable test data into the major scientific investigations slated for the SKA as it becomes operational.

 

The Pawsey Supercomputing Centre will manage the enormous volume of data collected by SKA-low.
The Pawsey Supercomputing Centre will manage the enormous volume of data collected by SKA-low.

A Supercomputer in the backyard

The scale of SKA, and the resultant flood of data, requires the rapid development of methods to process data. The Pawsey Supercomputing Centre – a purpose-built powerhouse named after pioneering Australian radio astronomer Dr Joe Pawsey and run by the Interactive Virtual Environments Centre (iVEC) – includes a supercomputer called Galaxy, dedicated to radio astronomy research. A key data challenge is finding ways in which the signal processing method can be split up and processed simultaneously, or ‘parallelised’, so that the full force of the supercomputing power can be used. The proximity of the signal processing experts at CIRA to iVEC means that researchers can continually prototype new ways of parallelising the data, with the goal being to achieve real-time analysis of data streaming in from the SKA.

Phillip English

Forest decline is slowing

Forests worldwide are declining but the rate of decline is slowing due to improved forest management, according to the most comprehensive long-term forest survey ever completed.

The review of 25 years of forest management in 234 countries was conducted by Dr Sean Sloan and Dr Jeff Sayer of James Cook University, in conjunction with dozens of international researchers and the Food and Agricultural Organization of the United Nations.

The study found that the global deforestation rate since 2010 – 3.3 million hectares per year – is less than half that during the 1990s (7.2 million hectares per year).

This global slowdown is due to better management of tropical forests. Since 2010 the tropics lost 5.5 million hectares of forest per year, compared to 9.5 million hectares per year during the 1990s.

Sub-tropical, temperate, and boreal climatic regions had relatively stable forest areas.

Logging operation in Sumatra.
Logging operation in Sumatra.

Satellite data showed tropical forests degraded (damaged but not cleared) since 2000 are six times as extensive as all tropical deforestation since 1990, far more than in other climatic regions.

“While some of this tropical degradation reflects the temporary impacts of logging, the real fear is that much is the leading edge of gradual forest conversion,” Sloan says.

High rates of tropical deforestation and degradation mean that tropical forests were a net emitter of carbon to the atmosphere, unlike forests of other climatic regions.

“But tropical forests are emitting only slightly more carbon than they are absorbing from the atmosphere due to regrowth, so with slightly better management they could become a net carbon sink and contribute to fighting climate change,” Sloan says.

Despite growing demand for forest products, rates of plantation afforestation have fallen since the 2000s and are less than required to stop natural forest exploitation. Demand for industrial wood and wood fuel increased 35% in the tropics since 1990.

“The planting of forests for harvest is not increasing as rapidly as demand, so natural forests have to take the burden,” Sloan says.

Northern, richer countries had steady or increasing forest areas since 1990. Their forests are increasingly characterised by plantations meant for harvest.

While natural forests expanded in some high-income countries, collectively they declined by 13.5 million hectares since 1990, compared to a gain of 40 million hectares for planted forests.

Sloan says that investment in forest management in poorer tropical countries where management and deforestation were worst may herald significant environmental gains.

“But attention must extend beyond the forest sector to agricultural and economic growth, which is rapid in many low-income and tropical countries and which effect forests greatly,” Sayer says.


Background to Study

The Food and Agricultural Organization (FAO) released the Global Forest Resources Assessment 2015 (FRA 2015) on September 7 2015. The FAO began publishing FRA reports in 1948 to assess the global state of forest resources, given concerns over shortages of forest products. The FAO has published FRA reports at regular intervals since on the basis of individual reports from countries, numbering 234 for the FRA 2015. FRA reports now survey a wide array of forest ecological functions, designations, and conditions in addition to forest areas for each country.

For the first time, the FRA 2015 report was realised by dozens of international experts who undertook independent analyses of FRA data, resulting in 13 scholarly articles published in a special issue of the journal Forest Ecology and Management (2015 volume 352).

The data and trends highlighted in these articles are a significant advance for the global scientific and conservation communities. This article constitutes one of 13 published in Forest Ecology and Management and integrates their major findings.


This article was first published by James Cook University on 8 September 2015. Read the original article here.

New biosecurity centre to stop fruit flies

Upgraded bio-security measures to combat fruit fly will be introduced in Australia, bringing added confidence to international trade markets.

South Australia is the only mainland state in Australia that is free from fruit flies – a critical component of the horticultural industries’ successful and expanding international export market.

A new national Sterile Insect Technology facility in Port Augusta, located in the north of South Australia, will produce billions of sterile male fruit flies – at the rate of 50 million a week – to help prevent the threat of fruit fly invading the state.

The new measures will help secure producers’ access to important citrus and almond export markets including the United States, New Zealand and Japan, worth more than $800 million this year.

The Sterile Insect Technique (SIT) introduces sterile flies into the environment that then mate with the wild population, ensuring offspring are not produced.

Macquarie University Associate Professor Phil Taylor says the fly, know as Qfly because they come from Queensland, presents the most difficult and costly biosecurity challenge to market access for most Australian fruit producers.

“Fruit flies, especially the Queensland fruity fly, present a truly monumental challenge to horticultural production in Australia,” he says.

“For generations, Australia has relied on synthetic insecticides to protect crops, but these are now banned for many uses. Environmentally benign alternatives are needed urgently – this is our goal.

The impetus behind this initiative is to secure and improve trade access both internationally and nationally for South Australia.

It will increase the confidence of overseas buyers in the Australian product and make Australia a more reliable supplier. Uncertainty or variation of quality of produce would obviously be a concern for our trading partners.”

South Australia’s Agriculture Minister Leon Bignell says the $3.8 million centre would produce up to 50 million sterile male Qflies each week.

“The State Government has invested $3 million and Horticulture Innovation Australia Ltd (HIA) has contributed $800,000 in this project and construction is expected to take 10 months,” Bignell says.

“While fruit fly is a major problem with horticultural crops in Australia’s other mainland states, South Australia remains fruit fly free, but we are still at risk of outbreak.”

“Producing male-only sterile Qflies has never been done before on this scale and this facility will have an enormous impact on the way in which we deal with outbreaks.”

Fruit fly management protects the commercial production of fruit and vegetables, including wine grapes and almonds, with an estimated farm-gate value of $851 million.

South Australia is also the only mainland state which has a moratorium on growing GM food crops and is one of the few places in the world free of the vine-destroying pest phylloxera.

“Because of these attributes, South Australian products stand out in the competitive global market, which is increasingly seeking clean and safe food and wine,” Bignell says.

The research partner consortium, SITplus, intends to invest about $50 million during the next five years to support the national fruit fly management program.

The consortium is a research group with experts from Macquarie University, Primary Industries and Regions SA’s Biosecurity SA and South Australian Research and Development Institute divisions, HIA, the CSIRO Health and Biosecurity Flagship, Plant & Food Research Australia, and the NSW Department of Primary Industries.

– John Merriman

This article was first published by The Lead South Australia on 2 September 2015. Read the original article here.

Mosquito urban wetlands

After a stint working as an environmental consultant trawling swampland in Sydney and Wollongong, Jayne Hanford has gone back to uni to do a postgrad researching one of Australia’s least favourite invertebrates – mosquitoes.

“Bugs are really cool,” says Jayne, with characteristic enthusiasm. “They’re like little aliens when you look at them under a microscope, and there’s a lot of diversity.”

Jayne’s research at The University of Sydney looks at what conditions can create mosquito-free urban wetlands and preserve urban wetland biodiversity.

“I’m the only person researching the aquatic environment – there are people working on tic pathogens, bees, spiders, ants and bats in urban areas,” says Jayne, describing the diversity of research being undertaken at her lab.

There is currently little research on biodiversity in urban wetlands – and what research is available is somewhat disjointed.

While the conditions conducive for mosquitoes are well understood in natural wetlands, as are the conditions for creating high biodiversity, these findings haven’t been applied to urban wetland ecology.

“I hadn’t really thought about mosquitoes before, I was more interested in the protection of biodiversity, and thought it would be interesting to look at that in an urban context,” says Jayne.

Her main supervisor at the uni, Associate Professor Dieter Hochuli is focused on urban ecology, so Jayne took the opportunity to undertake research into how biodiversity and mosquito populations are linked in urban wetlands.

“The councils I’ve spoken to would really like to know if their wetlands do have mosquitoes because it influences how they manage them in the future.”

As wetland vegetation are often good breeding grounds for mosquitoes, Jayne’s research will assist councils to understand the biodiversity value of a wetland and whether it poses a risk to public health from mosquito-borne diseases.

This understanding will lead to better management of a wetland’s biodiversity while minimising risks from mosquitos. And could allow for the integration of biodiversity and stormwater and wastewater management strategies with public health programs.

“My research will look at what we need to create a really good network of wetlands for conservation in urban areas that tick all the boxes,” explains Jayne.

“They must be visually appealing, be places for recreation, provide a habitat for wildlife, improve water quality, minimise mosquito or weed infestations – and avoid making people sick. People can walk their dogs around them, and they benefit biodiversity.”

– Carl Williams