Tag Archives: food

seaweed snack

Building healthy bones

Developed in South Australia by researchers at Flinders University in collaboration with the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the lobster shell and seaweed snack aims to be a highly nutritious alternative to dairy products.

Known as SeaNu, it is being created to address the increasing number of children who shun milk products because of cultural or personal reasons. The jelly is aimed for commercial release in Australia in early 2018 with an Asian launch to follow soon after.

Director of the Centre for Marine Bioproducts Development at Flinders University Professor Wei Zhang says SeaNu will target global health markets but is best suited for Asia because of the high regard for Australian marine products.

“In Australia, one in six people avoid diary and that applies to children also,” he says.

“In general, calcium deficiency is a global issue and there is a need for products that have no dairy.

“Many Asian countries also do not typically eat large amounts of dairy products and we are hoping to definitely target there soon after we commercialise the product in Australia.”

SeaNu  is a product of Flinders University technology that reconstitutes biological material to make it suitable for human consumption.

The biorefinery technology takes the seaweed and lobster shell, formulating it into a small jelly for children to take to school in their lunchboxes.

Professor Zhang, who is president of the Australia-NZ Marine Biotechnology Society, says farmed and wild seaweed are widely used in Asian countries and some parts of Europe as vitamin and mineral supplements.

Seaweed is not only rich in trace minerals, calcium and vitamins but is a low-calorie source of protein and fibre, responsible for up to 20 per cent of the Asian diet. The seaweed food ingredients business is worth an estimated US$1 billion dollars. Lobster shell is also high in calcium and protein.

Professor Zhang says while seaweed has a major nutritional benefit in food, the research team is working on developing a range of different products including cosmetics and biofuel.

SeaNu was presented in Melbourne at the end of the CSIRO’s 12-week ON Accelerate Program, which pairs researchers with mentors to help them move their ideas from the lab, out to investors, and then to consumers.

The ON Demo Night in April gave teams the opportunity to pitch their innovations to an audience of industry experts, investors and potential partners for further funding and support for commercialisation.

Seaweed researcher Peng Su and nutritionist Dr Rebecca Perry from Flinders Partners, along with Dr Michael Conlon and Dr Damien Belobrajdic from CSIRO were also part of the SeaNu team.

The seaweed snack is still in its prototype phase but is being refined for taste and texture so it can meet its projected launch date of January 2018.

– Caleb Radford

This article was first published by The Lead. Read the original article here.

CO₂ cuts nutrition

CO₂ cuts nutrition

Climate change is affecting the Earth, through more frequent and intense weather events, such as heatwaves and rising sea levels, and is predicted to do so for generations to come. Changes brought on by anthropogenic climate change, from activities such as the burning of fossil fuels and deforestation, are impacting natural ecosystems on land and at sea, and across all human settlements.

Increased atmospheric carbon dioxide (CO₂) levels – which have jumped by a third since the Industrial Revolution – will also have an effect on agriculture and the staple plant foods we consume and export, such as wheat.

Stressors on agribusiness, such as prolonged droughts and the spread of new pests and diseases, are exacerbated by climate change and need to be managed to ensure the long-term sustainability of Australia’s food production.

Researchers at the Primary Industries Climate Challenges Centre (PICCC), a collaboration between the University of Melbourne and the Department of Economic Development, Jobs, Transport and Resources in Victoria, are investigating the effects of increased concentrations of CO₂ on grain yield and quality to reveal how a more carbon-enriched atmosphere will affect Australia’s future food security.

CO₂ cuts nutrition
An aerial view of the Australian Grains Free Air CO₂ Enrichment (AGFACE) project, where researchers are investigating the effects of increased concentrations of carbon dioxide on grain yield and quality.

Increasing concentrations of CO₂ in the atmosphere significantly increase water efficiency in plants and stimulate plant growth, a process known as the “fertilisation effect”. This leads to more biomass and a higher crop yield; however, elevated carbon dioxide (eCO₂) could decrease the nutritional content of food.

“Understanding the mechanisms and responses of crops to eCO₂ allows us to focus crop breeding research on the best traits to take advantage of the eCO₂ effect,” says Dr Glenn Fitzgerald, a senior research scientist at the Department of Economic Development, Jobs, Transport and Resources.

According to Fitzgerald, the research being carried out by PICCC, referred to as Australian Grains Free Air CO₂ Enrichment (AGFACE), is also being done in a drier environment than anywhere previously studied.

“The experiments are what we refer to as ‘fully replicated’ – repeated four times and statistically verified for accuracy and precision,” says Fitzgerald. “This allows us to compare our current growing conditions of 400 parts per million (ppm) CO₂ with eCO₂ conditions of 550 ppm – the atmospheric CO₂ concentration level anticipated for 2050.”

The experiments involve injecting CO₂ into the atmosphere around plants via a series of horizontal rings that are raised as the crops grow, and the process is computer-controlled to maintain a CO₂ concentration level of 550 ppm.

CO₂ cuts nutrition
Horizontal rings injecting carbon dioxide into the atmosphere as part of the AGFACE project. Credit: AGFACE

“We’re observing around a 25–30% increase in yields under eCO₂ conditions for wheat, field peas, canola and lentils in Australia,” says Fitzgerald.


Pests and disease

While higher CO₂ levels boost crop yields, there is also a link between eCO₂ and an increase in viruses that affect crop growth.

Scientists at the Department of Economic Development, Jobs, Transport and Resources have been researching the impact of elevated CO₂ levels on plant vector-borne diseases, and they have observed an increase of 30% in the severity of the Barley Yellow Dwarf Virus (BYDV).

CO₂ cuts nutrition
Higher CO₂ levels are linked with an increase in the severity of Barley Yellow Dwarf Virus.

Spread by aphids, BYDV is a common plant virus that affects wheat, barley and oats, and causes yield losses of up to 50%.

“It’s a really underexplored area,” says Dr Jo Luck, director of research, education and training at the Plant Biosecurity Cooperative Research Centre. “We know quite a lot about the effects of drought and increasing temperatures on crops, but we don’t know much about how the increase in temperature and eCO₂ will affect pests and diseases.

“There is a tension between higher yields from eCO₂ and the impacts on growth from pests and diseases. It’s important we consider this in research when we’re looking at food security.”


This increased yield is due to more efficient photosynthesis and because eCO₂ improves the plant’s water-use efficiency.

With atmospheric CO₂ levels rising, less water will be required to produce the same amount of grain. Fitzgerald estimates about a 30% increase in water efficiency for crops grown under eCO₂ conditions.

But nutritional content suffers. “In terms of grain quality, we see a decrease in protein concentration in cereal grains,” says Fitzgerald. The reduction is due to a decrease in the level of nitrogen (N2) in the grain, which occurs because the plant is less efficient at drawing N2 from the soil.

The same reduction in protein concentration is not observed in legumes, however, because of the action of rhizobia – soil bacteria in the roots of legumes that fix N2 and provide an alternative mechanism for making N2 available.

“We are seeing a 1–14% decrease in grain-protein concentration [for eCO₂ levels] and a decrease in bread quality,” says Fitzgerald.

“This is due to the reduction in protein and because changes in the protein composition affect qualities such as elasticity and loaf volume. There is also a decrease of 5–10% in micronutrients such as iron and zinc.”

This micronutrient deficiency, referred to as “hidden hunger”, is a major health concern, particularly in developing countries, according to the International Food Research Policy Institute’s 2014 Global Hunger Index: The challenge of hidden hunger.

There could also be health implications for Australians. As the protein content of grains diminishes, carbohydrate levels increase, leading to food with higher caloric content and less nutritional value, potentially exacerbating the current obesity epidemic.

The corollary from the work being undertaken by Fitzgerald is that in a future CO₂-enriched world, there will be more food but it will be less nutritious. “We see an increase in crop growth on one hand, but a reduction in crop quality on the other,” says Fitzgerald.

Fitzgerald says more research into nitrogen-uptake mechanisms in plants is required in order to develop crops that, when grown in eCO₂ environments, can capitalise on increased plant growth while maintaining N2, and protein, levels.

For now, though, while an eCO₂ atmosphere may be good for plants, it might not be so good for us.

– Carl Williams

www.piccc.org.au

www.pbcrc.com.au

Growth Centre gets tick of approval

The Minister for Industry and Science, Ian Macfarlane, has approved the Food and Agribusiness Growth Centre which is part of the $225 million Industry Growth Centre Initiative. The Growth Centre headquarters will be located at the CSIRO’s Food Innovation Centre in Werribee, Victoria.

The four main areas the Growth Centre will be focusing on will be reducing regulatory burden, commercialising new products and services, engaging with global markets and supply chains, and improving workforce skills. Food Innovation Australia Ltd (FIAL) will receive $15.4 million from the Australian Government for the first four years of its operation as a Growth Centre, and look to increase this investment from industry and other sources.

The new Growth Centre board met for the first time on 29 June 2015, and various strategic issues relating to the food and agribusiness sector were discussed. Details about the forthcoming sectoral strategy that will be used to align the Growth Centre activities will be shared over the coming year.

This information was shared by the CRC Association Newsletter on 29 July 2015. Read the newsletter here.

Two microbes hold key to superior feed crops

Scientists have identified two microbes that build bigger and more resilient feed crops, potentially boosting farmers’ bottom lines by millions of dollars.

The biotechnology research conducted at Flinders University in South Australia identified two strains of microbes that dramatically increase the ability of lucerne to fix atmospheric nitrogen, boosting the feed crop’s early growth and resilience, and ultimately its yield.

Research by medical biotechnology PhD student Hoang Xuyen Le drew on the hundreds of strains of endophytic actinobacteria, which grow naturally within legume roots. His research isolated and identified two strains of microbes that in laboratory and glasshouse trials were shown to promote growth in the shoots of the legume plants.

The research was supervised by Professor Chris Franco from Flinders and Ross Ballard from South Australian Research and Development Institute (SARDI). A patent has been lodged in relation to the two strains.

Nitrogen is absorbed by the plants through the formation of external nodules by symbiotic rhizobium bacteria that grow in the nodules. Franco says that following the inoculation of the lucerne seeds with spores of the actinobacteria, the nodules grew significantly larger, fixing greater amounts of nitrogen.

“Up to 50 or even 70 per cent more nitrogen was fixed,” says Franco.

The effect was to substantially improve the establishment of the lucerne, increase its resilience in drought conditions and also boost its yield.

“We found that our two main strains gave us a crop yield increase of 40 to 50 per cent in the glasshouse, and we would look for at least a 20 per cent improvement in the field,” says Franco.

He says as much as 25 per cent of the higher levels of nitrogen persisted in the soil, improving the growing conditions for subsequent crops.

The Flinders biotechnologists will now expand their trials on lucerne in the field, and will also look for similar effects in other legume crops, including peas, chick peas and faba and soya beans.

Further research is required to understand the underlying mechanism of the bugs: while it is likely that their natural propensity to produce bioactive compounds is partly responsible for increasing the general robustness of the inoculated lucerne by reducing disease, they may also be encouraging the growth of rhizobium bacteria in the soil.

Franco says that actinobacteria offer an environmentally friendly way of controlling disease, especially fungal root diseases such as Rhizoctonia, reducing the need for fossil-derived pesticides and fertiliser.

The potential to capture atmospheric nitrogen offers a major environmental benefit.

The legume seed crop, based in the South East of South Australia, is the basis of a national feed industry worth close to $100 million a year.

“This is very good news all round,” says Franco.

This article was first published by The Lead on 22 July 2015. Read the original article here.

Fields of glory

With the potential to add $250billion to Australia’s economy over the next two decades, according to a 2014 report by global consultancy Deloitte, agriculture has been deemed one of our five “super growth sectors”.

The Deloitte report, the final in its Building the Lucky Country series on future prosperity, says agriculture could be “as big as mining” for Australia, thanks to a combination of factors that include an increase in global population, rising food demand, food security issues and the changing dietary demands of Asia’s growing middle class in countries like China, India and Indonesia.

“Essentially, we have what the world wants and will increasingly need over the next 20 years,” says Rob McConnel, Deloitte’s Agribusiness National Leader.

“The global opportunity becomes obvious when you see the numbers, and the numbers are compelling. The world’s population is around 7billion and this is forecast to increase to 9billion by 2050, which is a 28% increase.”

The world will need to increase global food production by around 75% and Australian agribusiness “has the goods” to be a major player in meeting this demand, he says. But our challenges include investing more in research and development, improving tertiary education courses to produce more agribusiness and food science graduates, and “having a mature conversation” about foreign investment in agribusiness assets.

Also in 2014, economic consultants McKinsey & Company published a report on actions needed to build Australia’s international competitiveness across all sectors of the economy. The report, Compete to Prosper – Improving Australia’s Global Competitiveness, concludes that only one economic sector – agriculture – “stands out as strongly competitive”, but warns that its future contribution to the national economy should not be taken for granted.

While Australia is well-positioned, geographically and economically, to gain access to new markets in Asia, this growth is not assured, the McKinsey report says. Australia faces a “pervasive competitiveness problem” and many sectors of its economy lag behind international benchmarks.

The report argues that disruptive technologies such as robotics and digital communications are redefining economies and global trade, with supply chains fragmenting and becoming more specialised. The report uses Apple’s iPod as an example of a high-demand product that contains 451 distinct components sourced from around the world.

This means the global flows of those components, or “intermediate goods”, are more than three times greater than for the final product, and competition is moving from the level of industry sectors like manufacturing or retail to areas like design and logistics.

“Tools for file sharing and collaboration allow engineering plans to be drafted by teams in multiple countries; more sophisticated logistics allow construction firms to prefabricate everything from bathrooms in multi-storey dwellings to steel structures for liquefied natural gas processing plants,” the McKinsey report points out.

WHAT DOES THIS mean for Australian agriculture? Future farm research teams will include data analysts, software programmers, agronomists, statisticians, engineers, geneticists, cell biologists, hydrologists and atmospheric physicists. Farmers will use geo-location data to analyse climate, water tables and soils, and calculate inputs such as fertilisers and chemicals for weed and disease control. Farm robotics, from drone surveillance of livestock and crops to sophisticated digital systems that track soil moisture and farm water management, will be a major growth area.

The Australian Government has announced $100million in new grants for rural industries research. At the Australasian Research Managers Society conference in Canberra in September 2014,
the Department of Agriculture Senior Executive Richard Webb said “non-traditional areas” such as farm robotics will be funded by grants offered through Australia’s 15 Rural Research and Development Corporations. Australia is already a world leader in this area, Webb emphasised, adding that there was “plenty of scope” to work across industries and to adapt mining and defence robotic systems to farming.

Precision agriculture research, which involves the use of satellite mapping and remote sensors, is another area where Australia can lead. The Australian Centre for Field Robotics at the University of Sydney has developed a world-first robot sensor for vegetable farming – a solar-powered robot called Ladybird that will help farmers collect crop data, detect pests and control weeds.

The Plant Biosecurity CRC is working with researchers at the Queensland University of Technology (QUT) on the use of drones to detect diseases in wheat and other crops, as well as the spread of the myrtle rust fungus in Australia’s national parks.

Sustainable grazing systems also have the potential to improve farm productivity and profitability, while making Australia’s farms more resilient to climate variability. The Future Farm Industries CRC recently ended its seven-year research program with a string of successes, including two Eureka national science awards for its use of native perennials and shrubs to create drought resistant pasture systems. These new pastures can improve nutrition for livestock and help control intestinal parasites in sheep, reducing drenching and chemical costs. Following trials by the CRC with farmers in WA and NSW, these systems are in use across more than 1million hectares of farmland, and estimates suggest they could increase farm profitability by around $1.6billion by 2030.

The Future Farm Industries CRC also explored the possibility of planting woody crops, such as oil mallees, to diversify farm income from new industries such as aviation biofuels. In 2013, it won a CRC Association national award for innovation excellence for a low-emissions mallee harvester (capable of continuous harvesting) developed with Richard Sulman, Principal Engineer in Australian consultancy Biosystems Engineering.

160115_agricultureSMAUSTRALIA’S GLOBALLY competitive agronomists will also make greater use of genetics to improve crops and livestock. The Sheep CRC is using full genomic sequencing to improve the effectiveness of DNA tests used by wool and sheep meat producers when selecting breeding stock. The Dairy Futures CRC is involved in a global collaboration of more than 20 international participants led by Australian scientists to collect more than 1000 DNA sequences of bulls to identify gene mutations that cause embryonic death in dairy cattle (see page 20).

Four years ago, Australia’s Chief Scientist Professor Ian Chubb led a review of Australia’s international agricultural research programs and found that when national investments in agricultural science, technology and training were taken into account, the number of people benefiting from Australian agricultural expertise was around 400million a year.

“We are good at this,” he wrote in an introduction to the report. “Australia has a longstanding worldwide reputation for excellence in science related to food and agriculture. This is an area where Australia can show leadership.”

www.pbcrc.com.au

www.sheepcrc.org.au

www.dairyfuturescrc.com.au

Continue reading