Tag Archives: Victoria

Transplanting refugee knowhow

Featured image credit: new agricultural research brings community together to improve maize production. Credit: Facebook/Sunraysia Burundian Garden

Far from their native home in eastern Africa, a group of former refugees have brought their traditional farming methods to their new home in Victoria’s north.

Armed with shovels and hoes and some seeds, Mildura’s Twitezimbere Burundian community have planted a crop of maize – a traditional staple food in their home country – which is not only connecting them to the greater Mildura community, but is also connecting researchers with new agricultural methods.

These methods, employed in the northern Victorian township that’s known for its hot temperatures and vast food-growing industry, are helping researchers from the University of Melbourne and the University of Wollongong understand new ways to grow and support crops beyond current techniques. This is especially important in an era of increasingly erratic weather patterns.

agricultural research
Work in the maize field in Mildura. Credit: Facebook/Sunraysia Burundian Garden

Dr Olivia Dun, from the School of Geography at the University of Melbourne, says she and fellow researchers – Professor Lesley Head from the University of Melbourne and Dr Natascha Klocker from the University of Wollongong – have been able to gain important insights into different agricultural methods and crops that could be adopted in Australia.

With funding from an Australian Research Council Discovery Project, the researchers are exploring how people from ethnically diverse backgrounds value nature, how they practise agriculture and how they transfer skills from their home country to the Australian landscape.

“One of the reasons we’re doing this is because when we talk about migrants in relation to the environment, they’re often portrayed as a drain – extra people needing resources. It’s a population debate that frames migrants very negatively,” says Dun.

“So, we wanted to challenge that: these are people with skills, and migrants are not often asked about their knowledge and skills relating to nature.”

Drawing on this untapped resource has also provided the Burundian community multiple benefits: it not only provided the 100 members of the Burundian community with the main ingredient for their traditional dishes, but has also enabled them to connect with the broader Mildura community.

One of the Burundian participants, Joel, said of why he wanted to farm: “I looked and saw [that] this town is a town of farmers. So I thought it will suit me. Because I did not study, I don’t have a degree, I don’t expect to go and work in an office”.

Another agricultural research participant, Joselyne, says she sees Mildura as a “place to grow”.

And grow it has. The tiny maize seeds were planted in September 2016 and by February 2017 had flourished into a soaring crop in which people could get lost. Dun says its success has delighted everyone involved, but especially the local Burundians.

The Republic of Burundi is an east African country that has been blighted by a recent history of colonisation and bloody civil wars. Unlike Australia, the majority of Burundi’s population live in rural areas, so farming and agriculture are significant economic and practical components of life in the land-locked country.

Maize is a staple food for Burundians, along with sweet potato, cassava and wheat.

agricultural research
Preparing the soil for the first day of maize planting. Credit: Olivia Dun and Rachel Kendrigan

“Joel, Joselyne and other members of the Burundian community are extremely accomplished and knowledgeable farmers,” says Dun. “Through their interactions with more established farmers in Mildura, this project provides really exciting opportunities to learn about their farming methods.

“It’s been built on such a strong foundation of mutual respect and a willingness to learn from other cultures, which has been inspiring to see,” adds Klocker.

The community will consume about 10% of the maize fresh, and the rest will either be sold or dried and milled into flour to make ugali – a traditional East African dish. The success of the crop has opened the path for them to think about developing their own small business, selling maize to the Mildura community.

“They feel proud and it’s connected them to the general Australian community in Mildura in a very positive way,” says Dun.

The agricultural research project has been a group effort, made possible thanks to the generous access to one acre of land provided by Sunraysia Produce, support from Sunraysia Local Food Future’s members and Food Next Door program, Sunraysia Mallee Ethnic Communities Council and Mildura Development Corporation.

Dun says keeping this farming tradition alive has been particularly good for the younger kids amongst Mildura’s Burundian community, many of whom have grown up in Australia and have now been able to interact with this crop and how their family farmed in Africa.

Thanks to the success of the agricultural research pilot, more businesses and community groups are seeking to get involved and cultivate more under-utilised land. Vietnamese, Tamil, Nepalese, Hazara and young Anglo-Australian groups across Mildura want to get involved in the next farming scheme, with talks underway to cultivate and establish a community farm on a recently-donated 20-acre parcel of land.

– Alana Schetzer, University of Melbourne

The Food Next Door program needs help kick-starting the community farm and is currently looking for support and financial donations. If you would like to help, please email sunraysialocalfoodfuture@gmail.com

This article was first published by Pursuit. Read the original article here.

Creating a secure and resilient economy

Collaboration is a term frequently used in business and across many industries. It’s one I have come to hear often across my Small Business, Innovation and Trade portfolios, and it is also a term that causes much confusion – what exactly is collaboration?

I am regularly asked this when I talk about collaboration and why I think it’s important. I concede that it can sometimes be thrown around so much that it starts to look like a meaningless buzzword, and has perhaps become something of a cliché used by people when they want to look like they’re solving problems or pursuing innovation.

That being said, I genuinely believe in the importance of collaboration. It’s important that we work with others, that we share our knowledge and our resources to get better outcomes to the challenges we are facing.

With the world becoming increasingly digitised, it has never been more important for collaboration to occur across all sectors of our own economy, and across global economies.

The online world knows no geographical boundaries. So we have no choice but to collaborate. We need to work with our industry bodies, with global organisations and other governments to ensure we have the best capabilities to deal with whatever comes our way.

The challenge of cyber crime

The ever growing cybersecurity industry is the perfect example of why we need global collaboration. Cybersecurity not only safeguards the digital economy so that it can continue to grow, generate jobs and create a resilient economy into the future, it also ensures our online privacy and prevents cyber crime.

The Internet of Things (IoT), along with other technologies, is creating an almost totally connected world – gone are the days when we only needed to worry about protecting our personal computers. Instead we now need to protect vast networks of devices that span our offices, building sites, shopping centres, public transport systems and homes.

In 2016, the average Australian household had nine internet connected devices. While this may seem like quite a substantial number, it is expected to more than triple to 29 by 2020 and will also include devices such as fridges, televisions and indeed entire households that will run remotely.

Predicting patterns of cyber crime

While the IoT offers exciting opportunities to enhance our lives, it also offers opportunities for hackers to commit cyber attacks. Unlike traditional forms of crime, these attacks don’t just come from people living in your neighbourhood, state or country, they can come from anywhere in the world at any time of the day and from any device.

The only way we can ensure that we are best prepared to deal with these attacks is if we can predict patterns of cyber crime and learn how to mitigate it – this is where collaboration becomes crucial.

Shared knowledge is not just a good way to combat cyber crime, it is in fact the only way we will be able to succeed against it. The biggest problem with combating cyber crime is the speed at which technology advances – meaning it is vital that various agencies and organisations around the world are working together and sharing their knowledge and experience concurrently.

While the benefits of working together to combat the world’s biggest form of crime has its benefits, collaboration across the cybersecurity industry is itself is very valuable with the potential to create huge economic benefits for those in the game. Currently, cybersecurity industry’s estimated worth is over US$71 billion globally. This value is expected to double by 2020.

This industry has the potential to be a huge driver for Australian jobs and the economy, which is why Victoria is investing heavily in collaboration and collocation of allied interests.

In the past two years we have created Australia’s biggest cybersecurity cluster right in the heart of Melbourne. This hub includes Data61, the digital research arm of the CSIRO and Australia’s leading digital research agency; and the Oceania Cyber Security Centre, which brings together eight Victorian universities and major private sector partners.

Collocating at the Goods Shed in Melbourne’s Docklands precinct, the Oceania Cyber Security Centre will also work in partnership with Oxford University’s world-leading Global Cyber Security Capacity Centre, Israel’s Tel Aviv University, and the State of Virginia, the largest defence state in the USA.

These organisations and initiatives are undoubtedly reputable and capable of doing great things. Combining their knowledge and resources in a collaborative way creates an internationally connected cybersecurity powerhouse.

In Victoria, we are now leading Australia’s cybersecurity industry and emerging as a dominant player in the Asia Pacific but we cannot do it alone – we have acknowledged that, we have made moves to change that. In doing so we are increasing our cybersecurity capabilities and helping our allies to increase theirs.

While cybersecurity is a great example of how collaboration is currently working to secure the future of our digital economy, in many jobs and across many industries the situation is the same. In truth, it is simple – if you don’t work with others and learn from their mistakes or value their skills, you are sure to fail.

Hon Philip Dalidakis MP

Victorian Minister for Small Business, Innovation & Trade

Read next: Professor Zdenka Kuncic, Founding Co-Director of AINST, sheds light on opportunities to collaborate and accelerate through the U2B model.

Spread the word: Help Australia become a collaborative nation! Share this piece on collaboration against cyber crime using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Digital Disruption Thought Leadership Series here.

Industry engagement must start at school

Robotics, artificial intelligence, advanced materials and biotechnology will impact business models from 2018 and employment in engineering, architecture, IT and maths is on the rise. Currently women are significantly underrepresented in these jobs. 

Schools have a major role in promoting female participation in the STEM workforce. The challenge for schools and educators is to help female students understand this new environment and evolve the skills and resilience to operate in the future STEM landscape.

So how can we support female students to pursue STEM careers?

Provide opportunities

A major challenge for schools exists around resourcing and updating teacher knowledge. The Victorian Department of Education established six specialist science and mathematics centres to help schools inspire students in STEM through student programs and teacher professional learning.

These specialist centres collaborate with research institutes and industry to showcase Victorian innovation and entrepreneurial pursuits in STEM. Providing access to research-grade technologies and expertise immerses teachers and students in contemporary science investigations.  It helps girls visualise new STEM pathways and ignites their interest in pursuing studies in science.


“Industry and research institutions can play a pivotal role in supporting schools to bridge the divide between STEM in practice, and STEM in the classroom.”


Enhance motivation

What motivates a female student to engage with STEM? At the very core our answer should include interest and relevance. Relevance showcases how skills and knowledge apply to the world around us. Interest is maintained when students understand and can actively use new skills and knowledge to analyse results, solve problems and discuss issues.

A student will quickly disengage if they do not experience success. A series of sequenced challenges designed to activate thinking and the linking of ideas to create new knowledge supports students to take risks and develop and test theories.

Promote dialogue and skills of negotiation

Girls enjoy learning as a social and collaborative exercise. In this way they can hold meaningful discourse as they interrogate ideas. Providing learning spaces that promote social interaction around artefacts provides a non-threatening method of testing ideas and refining knowledge.

Raise aspirations

Industries want to increase female participation in the workforce as this promotes diversity and has been shown to improve outcomes. Cited barriers to hiring and promoting women include unconscious bias in managers and women’s low confidence and aspirations.

industry-school partnerships
Credit: Future of Jobs Report, World Economic Forum

We all harbour learned stereotypes that are encultured in us and affect decisions. Meeting and collaborating with early and established female career scientists has a positive impact on women’s aspirations. It helps to break down misconceptions surrounding the role of scientists by highlighting the convergence of STEM where collaboration – rather than competition – is key.

Industry and research institutions can play a pivotal role in supporting schools to bridge the divide between STEM in practice, and STEM in the classroom. By partnering with schools to develop meaningful and relevant learning experiences for students, enriched by access to facilities, resources, technologies and expertise, students realise how exciting and diverse a career in STEM can be.

By communicating the need for gender diversity and nurturing STEM skills that will be most valued in the workforce, we can help raise female aspirations as they reflect on subject choice in their senior years.

Jacinta Duncan

Director, Gene Technology Access Centre

Read next: Captain Mona Shindy describes her journey as a pioneer in the Royal Australian Navy.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on industry-school partnerships using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.

CO₂ cuts nutrition

Climate change is affecting the Earth, through more frequent and intense weather events, such as heatwaves and rising sea levels, and is predicted to do so for generations to come. Changes brought on by anthropogenic climate change, from activities such as the burning of fossil fuels and deforestation, are impacting natural ecosystems on land and at sea, and across all human settlements.

Increased atmospheric carbon dioxide (CO₂) levels – which have jumped by a third since the Industrial Revolution – will also have an effect on agriculture and the staple plant foods we consume and export, such as wheat.

Stressors on agribusiness, such as prolonged droughts and the spread of new pests and diseases, are exacerbated by climate change and need to be managed to ensure the long-term sustainability of Australia’s food production.

Researchers at the Primary Industries Climate Challenges Centre (PICCC), a collaboration between the University of Melbourne and the Department of Economic Development, Jobs, Transport and Resources in Victoria, are investigating the effects of increased concentrations of CO₂ on grain yield and quality to reveal how a more carbon-enriched atmosphere will affect Australia’s future food security.

CO₂ cuts nutrition
An aerial view of the Australian Grains Free Air CO₂ Enrichment (AGFACE) project, where researchers are investigating the effects of increased concentrations of carbon dioxide on grain yield and quality.

Increasing concentrations of CO₂ in the atmosphere significantly increase water efficiency in plants and stimulate plant growth, a process known as the “fertilisation effect”. This leads to more biomass and a higher crop yield; however, elevated carbon dioxide (eCO₂) could decrease the nutritional content of food.

“Understanding the mechanisms and responses of crops to eCO₂ allows us to focus crop breeding research on the best traits to take advantage of the eCO₂ effect,” says Dr Glenn Fitzgerald, a senior research scientist at the Department of Economic Development, Jobs, Transport and Resources.

According to Fitzgerald, the research being carried out by PICCC, referred to as Australian Grains Free Air CO₂ Enrichment (AGFACE), is also being done in a drier environment than anywhere previously studied.

“The experiments are what we refer to as ‘fully replicated’ – repeated four times and statistically verified for accuracy and precision,” says Fitzgerald. “This allows us to compare our current growing conditions of 400 parts per million (ppm) CO₂ with eCO₂ conditions of 550 ppm – the atmospheric CO₂ concentration level anticipated for 2050.”

The experiments involve injecting CO₂ into the atmosphere around plants via a series of horizontal rings that are raised as the crops grow, and the process is computer-controlled to maintain a CO₂ concentration level of 550 ppm.

CO₂ cuts nutrition
Horizontal rings injecting carbon dioxide into the atmosphere as part of the AGFACE project. Credit: AGFACE

“We’re observing around a 25–30% increase in yields under eCO₂ conditions for wheat, field peas, canola and lentils in Australia,” says Fitzgerald.


Pests and disease

While higher CO₂ levels boost crop yields, there is also a link between eCO₂ and an increase in viruses that affect crop growth.

Scientists at the Department of Economic Development, Jobs, Transport and Resources have been researching the impact of elevated CO₂ levels on plant vector-borne diseases, and they have observed an increase of 30% in the severity of the Barley Yellow Dwarf Virus (BYDV).

CO₂ cuts nutrition
Higher CO₂ levels are linked with an increase in the severity of Barley Yellow Dwarf Virus.

Spread by aphids, BYDV is a common plant virus that affects wheat, barley and oats, and causes yield losses of up to 50%.

“It’s a really underexplored area,” says Dr Jo Luck, director of research, education and training at the Plant Biosecurity Cooperative Research Centre. “We know quite a lot about the effects of drought and increasing temperatures on crops, but we don’t know much about how the increase in temperature and eCO₂ will affect pests and diseases.

“There is a tension between higher yields from eCO₂ and the impacts on growth from pests and diseases. It’s important we consider this in research when we’re looking at food security.”


This increased yield is due to more efficient photosynthesis and because eCO₂ improves the plant’s water-use efficiency.

With atmospheric CO₂ levels rising, less water will be required to produce the same amount of grain. Fitzgerald estimates about a 30% increase in water efficiency for crops grown under eCO₂ conditions.

But nutritional content suffers. “In terms of grain quality, we see a decrease in protein concentration in cereal grains,” says Fitzgerald. The reduction is due to a decrease in the level of nitrogen (N2) in the grain, which occurs because the plant is less efficient at drawing N2 from the soil.

The same reduction in protein concentration is not observed in legumes, however, because of the action of rhizobia – soil bacteria in the roots of legumes that fix N2 and provide an alternative mechanism for making N2 available.

“We are seeing a 1–14% decrease in grain-protein concentration [for eCO₂ levels] and a decrease in bread quality,” says Fitzgerald.

“This is due to the reduction in protein and because changes in the protein composition affect qualities such as elasticity and loaf volume. There is also a decrease of 5–10% in micronutrients such as iron and zinc.”

This micronutrient deficiency, referred to as “hidden hunger”, is a major health concern, particularly in developing countries, according to the International Food Research Policy Institute’s 2014 Global Hunger Index: The challenge of hidden hunger.

There could also be health implications for Australians. As the protein content of grains diminishes, carbohydrate levels increase, leading to food with higher caloric content and less nutritional value, potentially exacerbating the current obesity epidemic.

The corollary from the work being undertaken by Fitzgerald is that in a future CO₂-enriched world, there will be more food but it will be less nutritious. “We see an increase in crop growth on one hand, but a reduction in crop quality on the other,” says Fitzgerald.

Fitzgerald says more research into nitrogen-uptake mechanisms in plants is required in order to develop crops that, when grown in eCO₂ environments, can capitalise on increased plant growth while maintaining N2, and protein, levels.

For now, though, while an eCO₂ atmosphere may be good for plants, it might not be so good for us.

– Carl Williams

www.piccc.org.au

www.pbcrc.com.au