Featured image above: Alejandra Siverio-Gonzalez of the Synroc team. Credit: ANSTO
Synroc technology is an innovative and versatile nuclear waste management solution developed by the Australian Nuclear Science and Technology Organisation (ANSTO).
ANSTO’s Synroc technology locks up radioactive elements in ‘synthetic rock’ allowing waste, like naturally occurring minerals, to be kept safely in the environment for millions of years.

Synroc technology offers excellent chemical durability and minimises waste and disposal volumes, decreasing environmental risks and lowering emissions and secondary wastes.
ANSTO’s Synroc team is developing a waste treatment processing plant using Synroc technology for Australia’s molybdenum-99 (Mo-99) waste; Mo-99 is the parent nuclide for technetium-99m, the most widely used radioisotope in nuclear medicine. The plant will be the first of its kind, and will lead the world in managing nuclear wastes from Mo-99 production.

Dr Daniel Gregg, leader of the Synroc waste form engineering team at ANSTO, says the plant will demonstrate Australia’s commitment to providing technology solutions to the global nuclear community.
“We hope to partner with others and build several more plants around the world using Synroc technology,” he says.

Gregg says several countries are looking to build new Mo-99 production facilities, and regulators want assurances that facilities will be able to treat the resulting waste streams.
“With national regulators around the world putting more and more pressure on waste producers to deal with nuclear wastes, opportunities exist for Synroc as a leading option for nuclear waste treatment.” This places Synroc and Australia in an enviable position, adds Gregg.
“Synroc is a cost-effective, environmentally responsible option to treat and appropriately dispose of nuclear wastes without leaving a burden to future generations.”
In developing the plant, the Synroc team has designed process engineering technology and a fully integrated pilot plant that can treat large volumes of waste under a continuous process mode.
The team is also collaborating with national laboratories around the world to demonstrate strategies to treat radioactive waste for commercial benefit.
The focus is on waste streams – such as the growing stockpiles of long-lived nuclear waste – that are problematic for existing treatment methods. The real advantage, says Gregg, is Synroc’s ability to immobilise these problematic waste forms.
“Waste producers are required to immobilise nuclear wastes, and Synroc and Australia will be at the forefront of waste management technology.”
– Laura Boness
