Tag Archives: STEM workforce

industry-school partnerships

Industry engagement must start at school

Robotics, artificial intelligence, advanced materials and biotechnology will impact business models from 2018 and employment in engineering, architecture, IT and maths is on the rise. Currently women are significantly underrepresented in these jobs. 

Schools have a major role in promoting female participation in the STEM workforce. The challenge for schools and educators is to help female students understand this new environment and evolve the skills and resilience to operate in the future STEM landscape.

So how can we support female students to pursue STEM careers?

Provide opportunities

A major challenge for schools exists around resourcing and updating teacher knowledge. The Victorian Department of Education established six specialist science and mathematics centres to help schools inspire students in STEM through student programs and teacher professional learning.

These specialist centres collaborate with research institutes and industry to showcase Victorian innovation and entrepreneurial pursuits in STEM. Providing access to research-grade technologies and expertise immerses teachers and students in contemporary science investigations.  It helps girls visualise new STEM pathways and ignites their interest in pursuing studies in science.


“Industry and research institutions can play a pivotal role in supporting schools to bridge the divide between STEM in practice, and STEM in the classroom.”


Enhance motivation

What motivates a female student to engage with STEM? At the very core our answer should include interest and relevance. Relevance showcases how skills and knowledge apply to the world around us. Interest is maintained when students understand and can actively use new skills and knowledge to analyse results, solve problems and discuss issues.

A student will quickly disengage if they do not experience success. A series of sequenced challenges designed to activate thinking and the linking of ideas to create new knowledge supports students to take risks and develop and test theories.

Promote dialogue and skills of negotiation

Girls enjoy learning as a social and collaborative exercise. In this way they can hold meaningful discourse as they interrogate ideas. Providing learning spaces that promote social interaction around artefacts provides a non-threatening method of testing ideas and refining knowledge.

Raise aspirations

Industries want to increase female participation in the workforce as this promotes diversity and has been shown to improve outcomes. Cited barriers to hiring and promoting women include unconscious bias in managers and women’s low confidence and aspirations.

industry-school partnerships
Credit: Future of Jobs Report, World Economic Forum

We all harbour learned stereotypes that are encultured in us and affect decisions. Meeting and collaborating with early and established female career scientists has a positive impact on women’s aspirations. It helps to break down misconceptions surrounding the role of scientists by highlighting the convergence of STEM where collaboration – rather than competition – is key.

Industry and research institutions can play a pivotal role in supporting schools to bridge the divide between STEM in practice, and STEM in the classroom. By partnering with schools to develop meaningful and relevant learning experiences for students, enriched by access to facilities, resources, technologies and expertise, students realise how exciting and diverse a career in STEM can be.

By communicating the need for gender diversity and nurturing STEM skills that will be most valued in the workforce, we can help raise female aspirations as they reflect on subject choice in their senior years.

Jacinta Duncan

Director, Gene Technology Access Centre

Read next: Captain Mona Shindy describes her journey as a pioneer in the Royal Australian Navy.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on industry-school partnerships using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.

STEM talent

What can STEM learn from sport?

Australia is a passionate nation.

The recent Olympics triggered my thinking on how passionate we are about winning. I remember a time when Australia was unable to compete against the world class American, Russian and German teams.  Our nation reacted by establishing the government funded Australian Institute of Sport in Canberra (AIS). The AIS acknowledges they are responsible and accountable for Australia’s international sporting success. Australia’s top sporting talent is selected, nurtured, and trained for the purpose of competing against the world’s best. Their success is celebrated, and the cycle continues.

Growing the number of STEM experts in our workforce is no different. If Australia wants to be recognised as a world-class STEM nation, commitment to developing our talent through established strategic programs funded by sustainable investment is essential.

When measuring STEM talent, our focus is on numbers that come out of university. However, consider our athletes for a moment. They have already been training for the better part of a decade.  They don’t arrive at the institute ready to be trained. Junior athletics, swimming squads and after-school sport training are part of most schools and parents’ agenda to develop their children’s skills from a very young age.  If the success of sport is to be replicated for STEM disciplines, then school years should not be overlooked.

Creating a foundation for young women

Traditional education should always be respected and never replaced, however there is always room for flexibility and balance. My own career in IT was shaped by the foundations provided to me by my high school environment. The all-girls school I attended offered Computing Studies as a subject for the Higher School Certificate.  It was only the second year it was offered and approximately 20 students signed up.  It was here, along with my home environment of a tech-savvy family, where I developed foundations in IT.

I pursued a tertiary education in commerce as I initially had no interest in computer science. Nevertheless, my first significant role was working as a computer engineer in IT – a job I landed based on the foundational skills I had acquired through my high school studies. I had found a position where I was able to solve problems while continuing to learn and gain additional certifications. I was the only female in a team of 12, but I didn’t focus on the gender inequality at the time.

Developing Australia’s STEM talent

Innovation requires novel thinking and raising Australia’s STEM IQ to world-class requires a considered and committed long term strategy, including initiatives for supporting women in STEM.

I work for Deloitte in the technology industry alongside women who have studied econometrics, law, accounting, engineering and arts. Deloitte recognises the importance of driving Australia’s STEM agenda and (amongst other initiatives) have selected two female directors from cybersecurity and technology consulting to share their expertise and experiences with young Australian women through an online mentoring platform, Day of STEM.

Our aim is to inspire Australia’s future STEM generation and highlight the real-life opportunities available in professional services firms like Deloitte.

Elissa Hilliard

Partner, Risk Advisory, Deloitte Australia

Read next: Chair of ATSE’s Gender Equity Working Group, Dr Mark Toner, compares the national need for women in STEM with the barriers faced by women on a personal level.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on STEM talent using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.

promoting women

Not just a ‘pipeline’ problem

It is well documented that the number of women in STEM at senior levels in Australia are low. This is not a new problem, it has been reported for decades. The only thing we can be certain of is that it is not just a ‘pipeline’ problem anymore.

Women are embarking on careers in STEM at the highest rates ever seen. There is still room for improvement, but the bigger problem is that women leave STEM careers at the formative early to mid-career stage. They never get to senior levels, not because they don’t want to, but largely due to a system where opportunities aren’t  on offer.


“If we do nothing, we will be having this conversation again in another 10 years.”


Despite the assumption that the main problem is women having children, there are much bigger issues in STEM. For example, at a recent meeting of STEM academics, the moderator asked for ideas or insights into what would help women’s careers to progress. The first person to raise their hand was a senior male professor. He announced that flexible work conditions and financial support for housework and childcare are needed to support females in STEM. Perfectly reasonable suggestions many would say, but the unintended consequences of him speaking gets straight to the heart of the issue.

Firstly, he and everyone else in the room thought it was acceptable for him to speak on behalf of entire portion of the STEM workforce that he will never be a part of. Secondly, after he spoke not one female academic offered any of their own suggestions. By speaking first he immediately set the discussion to focus on carer and home responsibilities, reaffirming that women bear the burden of these activities and have no other major issues.

Why do we continue to let this happen? I wonder if he had not spoken first, would we have been given the chance to raise bigger issues women in STEM face?

Recognising and promoting women

After many workshops, symposia, conferences and focus groups for women in STEM the same theme resonates: women in STEM need to be recognised and included.

Women are rarely promoted rapidly up the ranks, do not easily promote themselves and do not feel entitled to recognition – they will not ask to be an author on a paper, to be lead investigator on a large collaboration or to apply for leadership positions. Men find all of this easier to do, therefore women continue to leave STEM careers rather than promote themselves based on ‘merit’ or ‘excellence’.

Should we attempt to change the innate, instinctive behaviours of males and females who happen to work in STEM? Or should we change the structure and systemic biases that funnel men to the top and women out of a career in STEM?

We need to do both to achieve real change.

It is exciting times in STEM in Australia as the Science and Gender Equity (SAGE) pilot aims to do this over the next two years. Organisations such as Women in STEMM Australia, Franklin Women and Male Champions of Change are giving a voice to women.

The time has come for the STEM sector to move on from just acknowledging the problem, to intentionally including women. If we do nothing, we will be having this conversation again in another 10 years.

Dr Nikola Bowden

Research Fellow, School of Medicine and Public Health, University of Newcastle

Read next: Managing Director of the Dow Chemical Company Tony Frencham talks about the changing corporate culture for Women in STEM.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on recognising and promoting women using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.

science literacy

Path to a ‘right-skilled’ workforce

The world is changing and changing fast! Several studies, such as Australia’s Future Workforce released by CEDA last year, tell us that 40% of the jobs we know today will not exist in 15 years. So what do we need to do be ready for this? Here is my four-step plan:

1. Need for basic science literacy

The need of a base level of science literacy is growing as our society becomes increasingly dependent on technology and science to support our daily lives[1]. However, the number of school children undertaking science and mathematics in their final years at high school is dropping at alarming rates.

Those who can use devices and engage with new technology are able to participate better in the modern world. Those unable to are left behind.

Because Australia has high labour costs, and as robotics and other automated technologies replace many jobs, school education needs to inspire young Australians to realise that science is both a highly creative endeavour, and a pathway to entrepreneurial and financial success.

We need to inspire a wider range of personality types to consider post-school science and engineering training and education as a pathway to build new businesses.

2. Need to broaden the scope of university education

Currently Australian universities are highly motivated to direct research and teaching activities towards academic excellence, as this is the recognised measure of university performance.

Industry experience and methods of solving industrial problems are not generally seen as components of the metrics of academic excellence.

We need to increase the focus on developing entrepreneurial skills and industry exposure and engagement during university education.


“If we are to achieve improvements in economic stimulus by R&D investment, it will be necessary to lift the skills base and the absorptive capacity of Australian companies.”


3. Need to lift industry skills

It is essential that businesses and technologists better understand people’s needs and wants, so they can be more successful in designing and producing products and services that increase their competitiveness locally, and allow them to enter the global market. They can do this by using the opportunities that digital-, agile-, e- and i-commerce can offer.

If we are to achieve improvements in economic stimulus by R&D investment, it will be necessary to lift the skills base and the absorptive capacity of Australian companies.

Recent statistics demonstrate that Australian manufacturing is characterised by a high vocational education and training (VET) to university-educated workforce ratio. If we are to move to a more advanced industry focus in Australia, this ratio needs to change – not necessarily by reducing the number of VET-qualified employees, but through the development of higher-value positions that necessitate a university science, technology, engineering and mathematics (STEM) educated workforce.

In industrial settings, complexities occur where the adoption of design-led innovation principles can make a difference. Recent research has indicated that the application of design-led innovation by Australian companies can be the forerunner of future success.

4. Embracing the full human potential

As future capacity builds through the initiatives mentioned above, there is a need to engage the full spectrum of capability that is already trained in STEM.

There is latent capability there for the taking if we capitalise on the opportunities that a diverse workforce has to offer.

Development of approaches to attract and retain women, people of different cultures, broader age groups including the young and the old, and all socioeconomic classes, has the potential to lift our workforce skill set.

Time is running out. We need to act now.

Dr Cathy Foley

Deputy Director and Science Director, CSIRO Manufacturing Flagship

Read next: Dr Alex Zelinsky, Chief Defence Scientist and Head of the Defence Science and Technology Group on how National security relies on STEM.

Spread the word: Help to grow Australia’s innovation knowhow! Share this piece using the social media buttons below.

Be part of the conversation: Share your ideas on innovating Australia in the comments section below. We’d love to hear from you!

[1] Science, Technology, Engineering and Mathematics: Australia’s Future, A Report from the Office of the Chief Scientist, September 2014.

STEM workforce

Australia’s STEM workforce

Featured image above from the Australia’s STEM Workforce Report

Australians with qualifications in science, technology, engineering and mathematics (STEM) are working across the economy in many roles from wine-makers to financial analysts, according to a new report from The Office of the Chief Scientist.

Australia’s Chief Scientist Dr Alan Finkel says Australia’s STEM Workforce is the first comprehensive analysis of the STEM-qualified population and is a valuable resource for students, parents, teachers and policy makers. The report is based on data from the 2011 Census, the most recent comprehensive and detailed data set of this type of information. The report will serve as a benchmark for future studies.

“This report provides a wealth of information on where STEM qualifications – from both the university and the vocational education and training (VET) sectors – may take you, what jobs you may have and what salary you may earn,” Finkel says.

“Studying STEM opens up countless job options and this report shows that Australians are taking diverse career paths.”

The report investigates the workforce destinations of people with qualifications in STEM fields, looking at the demographics, industries, occupations and salaries that students studying for those qualifications can expect in the workforce.

STEM workforce
Click here to see an infographic of key facts from the Australia’s STEM Workforce Report

The report found that fewer than one-third of STEM university graduates were female, with physics, astronomy and engineering having even lower proportions of female graduates. Biological sciences and environmental studies graduates were evenly split between the genders. In the vocational education and training (VET) sector, only 9% of those with STEM qualifications were women.

Finkel says that even more worrying than the gender imbalance in some STEM fields, is the pay gap between men and women in all STEM fields revealed in the report. These differences cannot be fully explained by having children or by the increased proportion of women working part-time.

The analysis also found that gaining a doctorate is a sound investment, with more STEM PhD graduates in the top income bracket than their Bachelor-qualified counterparts. However, these same STEM PhD holders are less likely to own their own business or work in the private sector.

Finkel says that preparing students for a variety of jobs and industries is vital to sustaining the future workforce.

“This report shows that STEM-qualified Australians are working across the economy. It is critical that qualifications at all levels prepare students for the breadth of roles and industries they might pursue.”

Click here to download the full Australia’s STEM Workforce report.

Click here to read Alan Finkel’s Foreword, or click here to read the section of the report that interests you.

This information was first shared by Australia’s Chief Scientist on 31 Mar 2016. Read the original media release here