Tag Archives: Australian technology news

blockchain technology

Blockchain tech shaping spatial information

Blockchain technology is the innovation behind Bitcoin. It has the potential to disrupt many industries by making processes more democratic, secure, transparent and efficient, and is currently approaching the peak of its hype cycle.

In late October, the CRC for Spatial Information (CRCSI) hosted a Student Day Solvathon, which focused on blockchains in spatial technology. Paul X. McCarthy from Online Gravity and Mark Staples from Data61 facilitated discussion and inspired 20 PhD students to think creatively about how blockchain technology could be applied.

The students divided into four teams with each team given the challenge to design an innovative use of blockchain tech in an application area relevant to current CRCSI research programs and initiatives. They created four initiatives:

Blockchain Technology in the Red Meat Supply Chain

This idea taps into the $15.8 billion red meat industry in Australia. With only 35% of cattle currently meeting the Meat Standard Australia (MSA) standard, the traceable open ledger capabilities of a block chain implementation could provide consumers, farmers and suppliers with greater confidence on the certification process. Increased uptake on MSA certification positively impacts the Australian economy as every 1% increase of certified meat equates to $40 million of additional returns.

Differing from traditional centralised database systems, the open ledger system requires the complete life history of a piece of meat to be well documented and made available across all players in the supply chain. Automated transaction verification techniques using location and timestamp from GNSS, RFID or DNA barcode information is added to the blockchain database when the cattle or meat is transported from one location to another. This not only optimises the supply chain, but also adds value to the quality of meat sold to the consumer. All this information will be able to be accessed from a smartphone, where a series of displays showing quality metrics of great interest to the consumer: an environmental score; a wellness score; a taste score; and other extra data that supports the purchase such as recommended or optimised recipe selections for that particular cut. 

Blockchain Technology in Health

Attacks on hospitals and civilian targets are clear violations of international law and an urgent problem in war zones that can be addressed by a new arrangement of existing technologies and organisations. A systematic solution to this could be one which provides transparent, decentralised, immutable, publicly available records of humanitarian activity used to visualise the location of verified humanitarian facilities.

The decentralised nature of a blockchain could allow untrusting involved parties to agree or trust the validity of information. Records can be immutable and transparent, so there would be traceability and increased accountability. If this platform was augmented with crowdsourced data, there could be continuous verification from multiple sources agreeing or converging on the location of a hospital. In essence, this would be decentralising and democratising humanitarian map data in conflict zones to support policy makers, governments, negotiators, experts in international relations and law (UN, WHO) and humanitarian organisations (MSF, Red Cross/Red Crescent).

Blockchain Technology in Land Administration and Cadastre

A new distributed database maintaining transactions is disruptive to many industries. It is producing a time stamped auditing information record. Land administration title offices maintain registries, ownerships, boundaries of private and public properties and keep records of changes to the properties as they happen.

These changes affect mortgages, restrictions, leases and right of ways. Blockchain technology has a huge potential in land administration contexts as governments privatise land registries, or want to publish trusted copy for all stakeholders without delays. Blockchain protocols in land administration offer complete historical transaction of all land title transactions, reducing dependency on central cadastral databases and can minimise the risk of fraud in data manipulation by a single user. In many parts of the world traditional registry and cadastral systems have not been sustainable in this advanced technological world. Urbanisation is at peak and land parcels are increasing day by day and discrepancies still exist whether it is in the developed or developing world.

Blockchain protocol in land registries could have many benefits like cost reduction, smart contracts, efficiency, transparency and long term investment. 

Blockchain Technology for Road Tolling

Alternate fuel sources will require changes in how road user charges are calculated and collected. Deriving charges that are consistent across carbon based fuels, electric vehicles, and other alternatives (such as hydrogen fuel cells) may prove difficult.

Alongside the issue of equitable pricing is the well-known problem that continued increases in the number of road users will lead to increased traffic congestion. However, the emergence of driverless vehicles presents a possible solution to both these problems that can be implemented using the executable contracts that blockchains offer.

Currencies based on blockchain technology allow value to be held in escrow until certain conditions are met. Once these requirements are satisfied the value is distributed to the opposing party (or parties). This occurs based on how the contract is programmed into the blockchain and as such there is no need for a “middleman” (like a bank) or the fee they charge for providing this service.

Our solution is a market based system where travel on a particular road at a particular time is booked in advance (based on the origin and destination of the user). Before departing on the journey the user has certainty as to how much the journey will cost as well as its duration (they will not be inconvenienced by excessive traffic congestion).

This means all space on the road, tracked through time, is allocated. A non-urgent journey may take a less direct route in order to avoid popular roads and reduce the amount paid in road user charges. Alternatively, an urgent journey can be made via the most direct route at a higher price. Because journeys may utilise roads owned by various parties, the planning system will program the appropriate distribution of value into the executable contract. When the conditions are met (i.e. the journey is completed) the contract is executed within the blockchain and the transfer of value from the user to the road owners represents an alternative to traditional road user charges.

Next Steps

The CRCSI is now developing a one to two-year strategy for blockchain research in spatial technology. Seizing the early initiative with blockchain technology will be important for the spatial sector to lead activities in this rapidly growing research and development area.

To find out more, visit the CRCSI website or contact Nathan Quadros at nquadros@crcsi.com.au

– Dr Nathan Quadros, CRCSI Education Manager

This article was first published by the CRCSI on 18 November 2016. Read the original article here.

STEM talent

What can STEM learn from sport?

Australia is a passionate nation.

The recent Olympics triggered my thinking on how passionate we are about winning. I remember a time when Australia was unable to compete against the world class American, Russian and German teams.  Our nation reacted by establishing the government funded Australian Institute of Sport in Canberra (AIS). The AIS acknowledges they are responsible and accountable for Australia’s international sporting success. Australia’s top sporting talent is selected, nurtured, and trained for the purpose of competing against the world’s best. Their success is celebrated, and the cycle continues.

Growing the number of STEM experts in our workforce is no different. If Australia wants to be recognised as a world-class STEM nation, commitment to developing our talent through established strategic programs funded by sustainable investment is essential.

When measuring STEM talent, our focus is on numbers that come out of university. However, consider our athletes for a moment. They have already been training for the better part of a decade.  They don’t arrive at the institute ready to be trained. Junior athletics, swimming squads and after-school sport training are part of most schools and parents’ agenda to develop their children’s skills from a very young age.  If the success of sport is to be replicated for STEM disciplines, then school years should not be overlooked.

Creating a foundation for young women

Traditional education should always be respected and never replaced, however there is always room for flexibility and balance. My own career in IT was shaped by the foundations provided to me by my high school environment. The all-girls school I attended offered Computing Studies as a subject for the Higher School Certificate.  It was only the second year it was offered and approximately 20 students signed up.  It was here, along with my home environment of a tech-savvy family, where I developed foundations in IT.

I pursued a tertiary education in commerce as I initially had no interest in computer science. Nevertheless, my first significant role was working as a computer engineer in IT – a job I landed based on the foundational skills I had acquired through my high school studies. I had found a position where I was able to solve problems while continuing to learn and gain additional certifications. I was the only female in a team of 12, but I didn’t focus on the gender inequality at the time.

Developing Australia’s STEM talent

Innovation requires novel thinking and raising Australia’s STEM IQ to world-class requires a considered and committed long term strategy, including initiatives for supporting women in STEM.

I work for Deloitte in the technology industry alongside women who have studied econometrics, law, accounting, engineering and arts. Deloitte recognises the importance of driving Australia’s STEM agenda and (amongst other initiatives) have selected two female directors from cybersecurity and technology consulting to share their expertise and experiences with young Australian women through an online mentoring platform, Day of STEM.

Our aim is to inspire Australia’s future STEM generation and highlight the real-life opportunities available in professional services firms like Deloitte.

Elissa Hilliard

Partner, Risk Advisory, Deloitte Australia

Read next: Chair of ATSE’s Gender Equity Working Group, Dr Mark Toner, compares the national need for women in STEM with the barriers faced by women on a personal level.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on STEM talent using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.

ICT

On the cusp of mass cultural change

The Australian Computer Society has estimated that an additional 100,000 new information and communications technology (ICT) professionals will be needed in Australia over the next five years alone. While this industry continues to grow and impact upon the Australian economy, only 2.8% of females choose ICT as their field.

In my role as head of the School of Computer Science at the University of Adelaide, I hear every year from young women who have been told by someone important in their lives – perhaps a teacher, a family member or a careers counsellor – that computer science is not a job that women do. However, we know that companies with strong gender diversity are more likely to be successful and have higher financial returns. We need to broaden participation in creating and driving technology innovation in our country so that it is reflective of the diverse perspectives and voices that represent our community.

How can we address this gender imbalance within ICT? I believe that the answer lies in our new Australian curriculum and in increasing support for our education system.

Australia is on the verge of a significant change – all Australian students will soon be learning the fundamental concepts of computer science, and will move from being users of technology to creators of their own technology. This is an incredible opportunity for us as a nation to change our culture for women in technology, and more broadly, women in science, technology, engineering and maths (STEM).

Changing stereotypes in STEM on screen

Children start forming their views on what careers are, and whether they are for a man or a woman, from an early age. These views are reinforced by messages from all directions. Very few family films show women in positions of power, or with active careers; only 45% of females in family films are shown to have careers, while STEM male roles outnumber STEM female roles by five to one.

These unconscious biases impact how we, and our children, develop our understanding of who we are, and who we can be. We urgently need to address this if we are to see the diverse technology community that we need.

Connecting STEM professionals with schools

Australian teachers need ongoing support from our industry and university sectors. We need to collectively engage with our schools to help teachers understand and guide technology creation.

Programs such as CSIRO’s Scientists and Mathematicians in Schools program, FIRST Australia and Code Club Australia, among others, provide valuable opportunities to volunteer and support your local communities in understanding STEM. These programs help explore the amazing ability of technology to solve community problems, and work to engage our students. All of our students.

Associate Professor Katrina Falkner

Head of School of Computer Science, University of Adelaide

Read next: The University of Newcastle’s Dr Nikola Bowden addresses misconceptions about the biggest issues for women in STEM.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on women in ICT using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.