Tag Archives: Alan Finkel

how to engage people in science

How to engage people in science

Featured image: Dr Alan Finkel AO at Science meets Parliament 2017 with Sally-Ann Williams, Engineering Community & Outreach Manager for Google Australia 

Dr Finkel spoke about how to engage people with science at the 18th Science meets Parliament event in Canberra today. One of his key messages was to develop your elevator pitch.

“Identify the key idea and write it up as a 100-word media release, then try it out on a politician.”

The need to develop simple, clear pitches to engage people with science was echoed by Buzzfeed political reporter and panellist Alice Workman, who gave the example of the viral ‘big chicken’ video on twitter as exemplifying the ‘simple, no BS’ idea that can rapidly get picked up in media. The video, released yesterday, was retweeted 35,000 times.

While science research often cannot be distilled into one thought bubble, like any news story, science stories need a simple pitch that everyone can understand, Workman told the group of 200 scientists gathered for the two-day event.

“I think the bigger problem is trying not to use complicated words, but also to whittle stories down to their basics. Journalists are under the pump, and journalism is a business.”

Four key tools to engage people in science

Engaging an audience beyond clickbait requires a deep understanding of your audience, access to influential people and being prepared, said Dr Finkel, who listed attitude, ambassadors, access and ammunition as four key tools for science advocacy.

He emphasised having an open attitude to engage people with science.

“You can’t assume your audience knows the facts. You can always assume they have the capacity to learn.”

He also said that it was important for science to have ambassadors, and that his office was in ‘early consideration’ of a program that mirrored internships such as the volunteer internship program which allows students and professionals to learn from US congress – and which funds them for up to one year to learn about the political process there.

“Could we create the same process for Australia? It takes a person of integrity and awareness to be an ambassador. We need to create the same qualities in ambassadors for science,” said Finkel.

Access to politicians is tempered by a difference in timescales at which science and politics operate, he said.

“Research timeframes are long; the window to operate in politics is short. How then can we hit the window where the evidence and the opportunities align? This event is one. Another is the Commonwealth Science council for which the PM is chair. This allows politicians and researchers to identify areas of shared opportunity in areas such as expanding the economy and navigating risks.”

Before approaching politicians, or others you need to engage, Finkel advocated preparing your pitch as ammunition for the encounter, as well as consulting widely, gaining supporters and identifying paths to funding.

Science meets Parliament is held over two days in Canberra and includes a televised National Press Club address, and a day at Parliament House, where delegates meet privately with parliamentarians.

Heather Catchpole

Engineering solution

Engineering solutions

From a purely engineering perspective, all real world problems are solvable. Nobody would choose to be a design engineer unless they deeply believed in their own ability to solve problems through creativity and a deliberate methodology – identify the problem, analyse it, build a prototype, test it, iterate, deliver the solution.

In the real world, of course, the challenges are much more difficult. Social, political and economic considerations prevail, often ruling out the elegant solutions that an engineering approach would suggest.

Let me give you an example: climate change. The problem is clear: global temperatures are rising, ice sheets are melting and oceans are acidifying. The analysis is clear: human activities, including the burning of fossil fuels for energy, are leading to rising levels of carbon dioxide in the atmosphere and are driving the problem. The imperative is clear: cut emissions – and do it quickly.

The pure engineering solution would involve massive installations of solar and wind, backed up by natural gas turbines, hydrogen storage, pumped hydro storage and battery storage to handle the intermittency, and investment in new hydroelectric and nuclear electricity generation.


“The challenge for engineers when it comes to these large-scale, socially complex issues is to work closely with colleagues across the humanities and social sciences to build solutions that communities can and will take forward.”


Once the existing electricity supply is decarbonised, the amount of low emissions electricity generated would be doubled or tripled so that liquid fossil fuels for transport and natural gas for heating could be rapidly replaced by low emissions electricity.

If only human affairs were so straightforward!

The challenge for engineers when it comes to these large-scale, socially complex issues is to work closely with colleagues across the humanities and social sciences to build solutions that communities can and will take forward.

But not all challenges are as wicked as climate change. The engineering method delivers handsomely in the corporate world, most often in collaboration with marketing, psychology and customer support systems. Smartphones, automobiles, improved building technologies and advanced materials are just some of the myriad examples.

The engineering method is also very applicable to organisational management. The evidence based, non-ideological problem solving approach of engineering can serve leaders from the shop floor to the corporate board.

When it comes to politics, in some countries (such as Germany) engineers are highly valued. But in Australia, they’re far less visible. I don’t know why that is so, but perhaps we need to be teaching charisma as a graduate attribute in Australian engineering faculties.

At the very least, we should be making crystal clear to our engineering students their opportunity to contribute to society outside of their profession.

Dr Alan Finkel AO

Australia’s Chief Scientist

Read next: Dr Anna Lavelle, CEO and Executive Director of AusBiotech on Innovation in Australian life sciences.

Spread the word: Help to grow Australia’s innovation knowhow! Share this piece using the social media buttons below.

Be part of the conversation: Share your ideas on innovating Australia in the comments section below. We’d love to hear from you!

STEM workforce

Australia’s STEM workforce

Featured image above from the Australia’s STEM Workforce Report

Australians with qualifications in science, technology, engineering and mathematics (STEM) are working across the economy in many roles from wine-makers to financial analysts, according to a new report from The Office of the Chief Scientist.

Australia’s Chief Scientist Dr Alan Finkel says Australia’s STEM Workforce is the first comprehensive analysis of the STEM-qualified population and is a valuable resource for students, parents, teachers and policy makers. The report is based on data from the 2011 Census, the most recent comprehensive and detailed data set of this type of information. The report will serve as a benchmark for future studies.

“This report provides a wealth of information on where STEM qualifications – from both the university and the vocational education and training (VET) sectors – may take you, what jobs you may have and what salary you may earn,” Finkel says.

“Studying STEM opens up countless job options and this report shows that Australians are taking diverse career paths.”

The report investigates the workforce destinations of people with qualifications in STEM fields, looking at the demographics, industries, occupations and salaries that students studying for those qualifications can expect in the workforce.

STEM workforce
Click here to see an infographic of key facts from the Australia’s STEM Workforce Report

The report found that fewer than one-third of STEM university graduates were female, with physics, astronomy and engineering having even lower proportions of female graduates. Biological sciences and environmental studies graduates were evenly split between the genders. In the vocational education and training (VET) sector, only 9% of those with STEM qualifications were women.

Finkel says that even more worrying than the gender imbalance in some STEM fields, is the pay gap between men and women in all STEM fields revealed in the report. These differences cannot be fully explained by having children or by the increased proportion of women working part-time.

The analysis also found that gaining a doctorate is a sound investment, with more STEM PhD graduates in the top income bracket than their Bachelor-qualified counterparts. However, these same STEM PhD holders are less likely to own their own business or work in the private sector.

Finkel says that preparing students for a variety of jobs and industries is vital to sustaining the future workforce.

“This report shows that STEM-qualified Australians are working across the economy. It is critical that qualifications at all levels prepare students for the breadth of roles and industries they might pursue.”

Click here to download the full Australia’s STEM Workforce report.

Click here to read Alan Finkel’s Foreword, or click here to read the section of the report that interests you.

This information was first shared by Australia’s Chief Scientist on 31 Mar 2016. Read the original media release here

Science meets parliament

Science meets Parliament

Featured image above: In his  National Press Club address this week Australia’s Chief Scientist, Alan Finkel, says lessons can be learned from The Swedish Vasa warship. Photo courtesy of Dennis Jarvis as per the Creative Commons License, image resized.

Finkel’s speech was the National Press Club address for Science meets Parliament 2016. This two-day event brings together scientists looking for better ways to communicate their research to policy makers.

Over a series of workshops and activities, people from the media, policy advisers and parliamentarians share their insights on developing policy and how to engage key influencers.

With a host of esteemed speakers, the Science meets Parliament program covers topics such as ‘what journalists need to turn your science into news’ and ‘science and politics, how do they mix?’. This year it also addressed what the National Innovation and Science Agenda means for scientists across Australia.

The event’s organisers, Science and Technology Australia, say that Science meets Parliament aims to “build links between scientists, politicians and policymakers that open up avenues for information and idea exchanges into the future”.

It also hopes to “stimulate and inform Parliament’s discussion of scientific issues that underpin Australia’s economic, social and environmental wellbeing”.

At last year’s event, Professor Ian Chubb AC, former Chief Scientist, spoke about the pace of progress over the past 25 years and how science will be a cornerstone for future prosperity.

This year, Australia’s Chief Scientist, Dr. Alan Finkel AO, spoke about a nation in transition, learning from failure and encouraging intelligent innovation. Finkel believes this requires thinking and operating at scale, and collaborative research to manage the issues and interactions that surround bold, innovative technology.

Click here to read the full transcript of Finkel’s address published by The Conversation on 2 March 2016.

Click here to see some of the speeches presented at last year’s event, such as The Messy Nature of the Policymaking Process, Who is Inspiring Australia? and Getting your Science out of the Lab.

– Elise Roberts