Tag Archives: laser

Early Career Researchers

Early career researchers take the stage

The Showcasing Early Career Researchers Competition celebrates good research that is well communicated. Entrants were asked to submit a 30-second video conveying the aim of their research. Five finalists were selected from 41 entrants to attend the 2017 CRC Association Annual Conference in Canberra, to give a 5-minute presentation. An audience vote at the Collaborate Innovate conference determined the winner. 

Meet the five Showcasing Early Career Researchers finalists and see a 30 second snapshot of their work. 

WINNER 2017

JULIE BEADLE – The HEARing CRC

HEARING LOSS IN OLDER ADULTS

early career researchers

Many older adults struggle to understand speech in everyday noisy situations, even when they perform well on traditional hearing tests. For my PhD, I am investigating how age-related changes in cognitive functioning contribute to this all too common situation. I aim to develop a listening test that is reflective of communication in real life and examine how age and cognitive skills like attention and memory are related to performance on this test.

Watch Julie’s video

FINALISTS 2017 

JACQUILINE DEN HOUTING – Autism CRC

TOO ANXIOUS TO ACHIEVE

early career researchers

Around 40% of autistic people experience anxiety, and autistic people also tend to underperform academically. In the non-autistic population, a link between these two issues has been found.

In my research, I am using assessments of anxiety and academic achievement with a group of autistic students, to identify whether the same link exists within the autistic community. These findings could inform support options for autistic students, allowing for improved mental health and academic outcomes.

Watch Jacquiline’s video

DORIS GROSSE – Space Environment Research Centre

MANAGING SPACE DEBRIS

early career researchers

Several 100,000 space debris objects orbiting Earth are threatening to collide with and destroy our satellites networks. To prevent those collisions, a ground based laser can be aimed at the debris objects moving them out of the way with the help of photon pressure. The atmosphere, however, distorts the laser beam. The Adaptive Optics system that I am building compensates for those distortions so that the laser beam can be focused correctly on the object in space and hence preventing collisions.

Watch Doris’s video

TOMAS REMENYI – Antarctic Climate & Ecosystems CRC

TACKLING CLIMATE CHANGE

Early career researchers

The Climate Futures Team translates fine-scale, regional climate model output into useful, usable tools that are used by decision makers in industries across Australia. Our focus is on working closely with industry during research design, and throughout the process, to ensure the outputs of our research are directly relevant to our stakeholders and align with their decision making frameworks.

Watch Tomas’s video

MELISSA SCOTT – Autism CRC

WORKPLACES FOR ALL

Early career researchers

Despite people with autism having high levels of skills and the desire to work, they remain unemployed. Many employers are hesitant to hire people with autism due to their lack of confidence and knowledge about autism. To assist employers to better understand autism and their specific needs in the workplace, the Integrated Employment Success Tool (IEST) has been developed. The IEST is a practical “tool kit” with strategies to help employers tailor the workplace for success for people with autism.

Watch Melissa’s video

This article on the Showcasing Early Career Researchers Competition was first published by the CRC Association. Read the original article here.

5 ways to get to Mars

Find the best 5 ways to get to Mars

Featured image above: Could this be your new home? We take a look at the best 5 ways to get to Mars if living on another world is an idea that entices you.

Looking for an escape from planet Earth? We look at the quickest and most likely 5 ways to get to Mars and start your new adventure.

1. Ask a genius

Serial entrepreneur extraordinaire Elon Musk announced earlier this year that Space X has a Mars mission in its sights. In an hour long video, the billionaire founder announced his aim to begin missions to Mars by 2018, and manned flights by 2024. The planned massive vehicles would be capable of carrying 100 passengers and cargo with a ambitious cost of US$200,000 per passenger. He’s joined by other ambitious privately funded projects including Amazon founder Jeff Bezo’s Blue Origin, which describes a reusable rocket booster and separable capsule that parachutes to landing. Meanwhile American inventor and chemical engineer, Guido Fetta has pionered a concept long discussed by the scientific community, electromagnetic propulsion, or EM drive, which creates thrust by bouncing microwave photons back and forth inside a cone-shaped closed metal cavity. Rumours this week from José Rodal from MIT that NASA was ready to release a paper on the process, which would be game-changing for space travel as the concept doesn’t rely on a propellant fuel.

2. Hitch a ride

In November 2016, NASA and CSIRO’s Parkes telescope opened the second of two 34-m dishes that will send and receive data from planned Mars missions, while also listening out for possible alien communications as part of UC-Berkeley-led project called Breakthrough Listen, the largest global project to seek out evidence of alien life. The Southern Hemisphere dish joins others in the US in using signal-processing hardware to sift through radio noise from Proxima b, the closest planet to us outside of the solar system. Whether an alien race would be willing or able to offer humanity a ride off its home planet is another question.

3. Aim high

While they are focused on getting out of the solar system, a team led by Dr. Philip Lubin, Physics Professor at the University of California, Santa Barbara think they could get the travel time to Mars down to just three days (as opposed to six to eight months). Their project, Directed Energy for Relativistic Interstellar Missions, or DEEP-IN, aims initially send “wafer sats”, wafer-scale systems weighing no more than a gram and embedded with optical communications, optical systems and sensors. It’s received funding of US$600,000 to date from NASA Innovative Advanced Concepts, and theoretically could send wafer sats at one-quarter the speed of light – 160 million km an hour – using photonic propulsion. This relies on a laser beam to ‘push’ a incredibly small, thin-sail-like object through space. While it may seem a long shot for passenger travel, the system also has other applications in defence of the Earth from asteroids, comets and other near-earth objects, as well as the exploration of the nearby universe.

deep-laser-sail
Image: An artist’s conception of the laser-led space propulsion. Credit Q. Zhang

4. Volunteer

The Mars One project already has 100 hopeful astronauts selected for its planned one-way trip – out of 202,586 applicants. The project is still at ‘Phase A’ – early concept stage – in terms of actually getting there, but makes the list of the top 5 ways to get to Mars due to the large amount of interest: it has raised US$ 1 million towards developing a practical way to safely land some of these select few on the red Planet.

5. Ask the experts

In 2020, Australia will host the COSPAR scientific assembly, a gathering of 3000 of the world’s top space scientists. The massive conference will no doubt include some of the top minds focussed on this very problem, offering new hope in our long-term quest for planetary travel.

“We come to the table with a bold vision for our nation’s place in science – and through science, our place in space, said Australia’s Chief Scientist, Alan Finkel.