Tag Archives: defence

disruptors

The Disruptors

Disruption can mean a lot of things. Dictionary definitions include “a forcible separation” or division into parts. More recently it has come to mean a radical change in industry or business. This brings to mind huge technological innovations. But what if it’s as simple as realising that a handheld device for detecting nitrogen could also be used to gauge how much feed there is in a paddock; that drones can be adapted to measure pest infestations; that communities can proactively track the movement of feral animals.

These are just some of the projects that Cooperative Research Centres (CRCs) are working on that have the capacity to change crop and livestock outcomes in Australia, improve our environment and advance our financial systems.

Data and environment

Mapping pest threats

Invasive animals have long been an issue in Australia. But a program developed by the Invasive Animals CRC called FeralScan is taking advantage of the widespread use of smartphones to combat this problem.

The program involves an app that enables landholders to share information about pest animals and the impacts they cause to improve local management programs.

Peter West, FeralScan project coordinator at the NSW Department of Primary Industries, says the team wouldn’t have thought of a photo-sharing app without genuine community consultation.

The project has been running for six years and can record sightings, impacts and control activities for a wide range of pest species in Australia, including rabbits, foxes, feral cats, cane toads and myna birds. West says that it now has 70,000 records and photographs, and more than 14,000 registered users across the country.

Disruptors

“For regional management of high-impacting pest species, such as wild dogs, what we’re providing is a tool that can help farmers and biosecurity stakeholders detect and respond quickly to pest animal threats,” says West.

“It enables them to either reprioritise where they are going to do control work or to sit down and work with other regional partners: catchment groups, local biosecurity authorities and the broader community.”

The app won the Environment and Energy Minister’s award for a Cleaner Environment in the field of Research and Science excellence at the Banksia Foundation 2016 Awards in December. Recent improvements to the app include the ability to monitor rabbit bio-control agents.Plans for the future include upgrading the technology to alert farmers to nearby pest threats, says West.

Find out more at feralscan.org.au

Revising disaster warnings

Also in the information space, the Bushfire and Natural Hazards CRC (BNHCRC) is investigating reasons we don’t pay attention to or ignore messages that notify us of an impending fire or floods. Researchers are using theories of marketing, crisis communications and advertising to create messaging most likely to assist people to get out of harm’s way.

“The way we personally assess risk has a big impact on how we interpret messages. If I have a higher risk tolerance I will probably underestimate risk,” says Vivienne Tippett, BNHCRC project lead researcher and professor at Queensland University of Technology. “We’ve worked with many emergency services agencies to assist them to reconstruct their messages.”

Instead of an emergency message with a brief heading, followed by the agency name and then a quite technical paragraph about weather conditions and geography, Tippett’s team has worked on moving the key message up to the top and translating it into layperson terms. For example, a message might now say something like: “This is a fast-moving, unpredictable fire in the face of strong winds.”

Tippett’s team is constantly working with emergency services to make sure their findings are made use of as quickly as possible. “The feedback from the community is that yes, they understand it better and they would be more likely to comply” she says.

Find out more at bnhcrc.com.au

AgTech

Measuring plant mass and pests in crops

The Plant Biosecurity CRC is using unmanned aerial systems (UAS or drones) to improve ways to detect pest infestations in vast crops. Project leader Brian McCornack is based at the Kansas State University in the US.

“The driver for using unmanned aerial systems has been in response to a need to improve efficiency [reduce costs and increase time] for surveillance activities over large areas, given limited resources,” says McCornack. “The major game-changer is the affordability of existing UAS technology and sophisticated sensors.”

Disruptors
Unmanned aerial vehicle Credit: Kansas State University

The project is now in its third year and adds an extra layer of data to the current, more traditional system, which relies on a crop consultant making a visual assessment based on a small sample area of land, often from a reduced vantage point.

The international collaboration between the US and the Australian partners at QUT, Queensland Department of Agriculture and Fisheries, and the NSW Department of Primary Industries means the project has access to a wide range of data on species of biosecurity importance.

disruptors
Unmanned aerial system (drone) pilots, Trevor Witt (left) and Dr Jon Kok (right) from the Plant Biosecurity CRC project, discuss data collected from a hyperspectral camera. Credit: Brian McCornack, Kansas State University

The CRC for Spatial Information (CRCSI) has also been working on repurposing an existing gadget, in this case to improve the accuracy of estimating pasture biomass. Currently, graziers use techniques such as taking height measurements or eyeballing to determine how much feed is available to livestock in a paddock. However, such techniques can result in huge variability in estimates of pasture biomass, and often underestimate the feed-on-offer.

Professor David Lamb, leader of the Biomass Business project, says graziers underestimate green pasture biomass by around 50%. There could be a huge potential to improve farm productivity by getting these measures right.

Through case studies conducted on commercial farms in Victoria, Meat and Livestock Australia found that improving feed allocation could increase productivity by 11.1%, or up to $96 per hectare on average, for sheep enterprises, and 9.6% ($52 per hectare) for cattle enterprises.

The CRCSI and Meat and Livestock Australia looked at a number of devices that measure NDVI (the normalised difference vegetation index), like the Trimble Green Seeker® and the Holland Crop Circle®. The data collected by these devices can then be entered into the CRCSI app to provide calibrated estimates of green pasture biomass.

Graziers can also create their own calibrations as they come to understand how accurate, or inaccurate, their own estimates have been. These crowd-sourced calibrations can be shared with other graziers to increase the regional coverage of calibrations for a range of pasture types throughout the year.

Find out more at pbcrc.com.au and crcsi.com.au

Using big data on the farm

In July 2016, the federal government announced funding for a partner project “Accelerating precision agriculture to decision agriculture”. The Data to Decisions Cooperative Research Centre (D2D CRC) has partnered with all 15 rural research and development corporations (RDCs) on the project. 

“The goal of the project is to help producers use big data to make informed on-farm decisions to drive profitability,” says D2D CRC lead Andrew Skinner.

He says that while the project may not provide concrete answers to specific data-related questions, it will provide discussion projects for many issues and concerns that cross different rural industries, such as yield optimisation and input efficiencies. 

Collaboration between the 15 RDCs is a first in Australia and has the potential to reveal information that could shape a gamut of agricultural industries. “Having all the RDCs come together in this way is unique,” says Skinner. 

Global markets

The Capital Markets CRC, in conjunction with industry, has developed a system that allows it to issue and circulate many digital currencies, securely and with very fast processing times – and because it is a first mover in this space, has the potential to be a global disruptor.

Digi.cash is a spinoff of the Capital Markets CRC and is specifically designed for centrally issued money, like national currencies. 

“Essentially we have built the printing press for electronic coins and banknotes, directly suited to issuing national currencies in digital form, as individual electronic coins and banknotes that can be held and passed on to others,” says digi.cash founder Andreas Furche.

A currency in digi.cash’s system is more than a balance entry in an accounts database, it is an actual encrypted note or coin. The act of transfer of an electronic note itself becomes the settlement. This is in contrast to legacy systems, where transaction ledgers are created that require settlement in accounts. So there is no settlement or clearing period.

“We have a advantage globally because we were on the topic relatively early and we have a group of people who have built a lot of banking and stock exchange technologies in the past, so we were able to develop a product which held up to the IT securities standards used in banking right away,” says Furche.

Digi.cash is currently operating with a limit of total funds on issue of $10 million. It is looking to partner with industry players and be in a leading position in the development of the next generation financial system, which CMCRC says will be based on digitised assets.

Find out more at digi.cash

Defence

Passive radar, as developed by the Defence Science and Technology Group (DST), has been around for some time, but is being refined and re-engineered in an environment where radiofrequency energy is much more common.  

As recognition of the disruptive capabilities of this technology, the Passive Radar team at DST was recently accepted into the CSIRO’s innovation accelerator program, ON Accelerate.

Active radar works by sending out a very large blast of energy and listening for reflections of that energy, but at the same time it quickly notifies anyone nearby of the transmitter’s whereabouts.

“Passive radar is the same thing, but we don’t transmit any energy – we take advantage of the energy that is already there,” explains passive radar team member James Palmer.

The technology is being positioned as a complement for active radar. It can be used where there are more stringent regulations around radar spectrum – such as the centre of a city as opposed to an isolated rural area. Radio spectrum is also a finite resource and there is now so much commercial demand that the allocation for Defence is diminishing.

Although the idea of passive radar is not a new one – one of the first radar presentations in the 1930s was a passive radar demonstration – the increase in radiofrequency energy from a variety of sources these days means it is more efficient. For example, signals from digital TV are much more suited to passive radar than analogue TV.

“We are at the point where we are seeing some really positive results and we’ve been developing commercial potential for this technology,” Palmer says. “For a potentially risky job like a radar operator the ability to see what’s around you [without revealing your position], that’s very game changing.”

There is also no need to apply for an expensive spectrum licence. The Australian team is also the first in the world to demonstrate that it can use Pay TV satellites as a viable form of background radiofrequency energy. The company name Silentium Defence Pty Ltd has been registered for the commercial use of the technology.

Find out more at silentiumdefence.com.au

– Penny Pryor

For more CRC discovery, read KnowHow 2017.

You might also enjoy Beat the News with digital footprints.

5 ways to get to Mars

Find the best 5 ways to get to Mars

Featured image above: Could this be your new home? We take a look at the best 5 ways to get to Mars if living on another world is an idea that entices you.

Looking for an escape from planet Earth? We look at the quickest and most likely 5 ways to get to Mars and start your new adventure.

1. Ask a genius

Serial entrepreneur extraordinaire Elon Musk announced earlier this year that Space X has a Mars mission in its sights. In an hour long video, the billionaire founder announced his aim to begin missions to Mars by 2018, and manned flights by 2024. The planned massive vehicles would be capable of carrying 100 passengers and cargo with a ambitious cost of US$200,000 per passenger. He’s joined by other ambitious privately funded projects including Amazon founder Jeff Bezo’s Blue Origin, which describes a reusable rocket booster and separable capsule that parachutes to landing. Meanwhile American inventor and chemical engineer, Guido Fetta has pionered a concept long discussed by the scientific community, electromagnetic propulsion, or EM drive, which creates thrust by bouncing microwave photons back and forth inside a cone-shaped closed metal cavity. Rumours this week from José Rodal from MIT that NASA was ready to release a paper on the process, which would be game-changing for space travel as the concept doesn’t rely on a propellant fuel.

2. Hitch a ride

In November 2016, NASA and CSIRO’s Parkes telescope opened the second of two 34-m dishes that will send and receive data from planned Mars missions, while also listening out for possible alien communications as part of UC-Berkeley-led project called Breakthrough Listen, the largest global project to seek out evidence of alien life. The Southern Hemisphere dish joins others in the US in using signal-processing hardware to sift through radio noise from Proxima b, the closest planet to us outside of the solar system. Whether an alien race would be willing or able to offer humanity a ride off its home planet is another question.

3. Aim high

While they are focused on getting out of the solar system, a team led by Dr. Philip Lubin, Physics Professor at the University of California, Santa Barbara think they could get the travel time to Mars down to just three days (as opposed to six to eight months). Their project, Directed Energy for Relativistic Interstellar Missions, or DEEP-IN, aims initially send “wafer sats”, wafer-scale systems weighing no more than a gram and embedded with optical communications, optical systems and sensors. It’s received funding of US$600,000 to date from NASA Innovative Advanced Concepts, and theoretically could send wafer sats at one-quarter the speed of light – 160 million km an hour – using photonic propulsion. This relies on a laser beam to ‘push’ a incredibly small, thin-sail-like object through space. While it may seem a long shot for passenger travel, the system also has other applications in defence of the Earth from asteroids, comets and other near-earth objects, as well as the exploration of the nearby universe.

deep-laser-sail
Image: An artist’s conception of the laser-led space propulsion. Credit Q. Zhang

4. Volunteer

The Mars One project already has 100 hopeful astronauts selected for its planned one-way trip – out of 202,586 applicants. The project is still at ‘Phase A’ – early concept stage – in terms of actually getting there, but makes the list of the top 5 ways to get to Mars due to the large amount of interest: it has raised US$ 1 million towards developing a practical way to safely land some of these select few on the red Planet.

5. Ask the experts

In 2020, Australia will host the COSPAR scientific assembly, a gathering of 3000 of the world’s top space scientists. The massive conference will no doubt include some of the top minds focussed on this very problem, offering new hope in our long-term quest for planetary travel.

“We come to the table with a bold vision for our nation’s place in science – and through science, our place in space, said Australia’s Chief Scientist, Alan Finkel.

e-textile

E-textile helps soldiers plug in

Featured image above: BAE Systems new e-textile could benefit a wide variety of professions, including the military. Credit: BAE Systems

A wireless conductive fabric that allows soldiers to plug electronic devices directly into armour is making a commercial push into Southeast Asia.

BAE Systems has developed the Broadsword Spine garment, which is being distributed throughout the Asia Pacific region by its Australian arm, based in Adelaide.

It was designed using a unique e-textile created by Intelligent Textiles Limited in the United Kingdom and can be inserted inside vests, jackets or belts.

BAE Systems’ wireless connector promises a range of benefits for multiple professions including the emergency services.

Broadsword Spine is on display this week at the Land Forces 2016 event in Adelaide, the capital of South Australia.

Program manager David Wilson said the technology was extremely lightweight and was able to pass power from any source, which made it adaptable to an assortment of devices.

“It’s revolutionary in terms of how it can pass power and data through USB 2.0,” he says.

“It reduces the weight and cognitive burden of the soldier because it is doing a lot of power and data management automatically.

“It also has no cables, which means you’ve got no snag hazard and no issue in terms of the breaking of cables and having to replace them.”

Broadsword Spine has been designed to replace contemporary heavy portable data and power supplies used by the military as well as firefighters, paramedics and rescue personnel.

The lack of cables and additional batteries make the new material 40 per cent lighter than other systems.

The e-textile was also developed to withstand harsh environments and is water, humidity, fire and shock resistant.

The material uses highly developed yarns that act as the electricity and data conductor.

It is able to connect to a central power source to support all electronic devices and is easily recharged in the field using simple batteries or in-vehicle charging points.

There are eight protected data or power ports that are capable of supplying 5A and operate at USB 2.0 speeds.

The management of power and data is automated and is performed by a computer that is embedded into the e-textile loom.

Users also have the option of monitoring and controlling the technology manually using a smartphone app.

Wilson said contemporary models were often heavy could be highly complicated products that required special maintenance.

“It’s unique in that regard in that we don’t sell the whole system, we sell the middle architecture and allow the customer to decide what they want and how to integrate that system,” he says.

“We’ve published the pin-outs and connections so they can create their own integration cables. They don’t have to keep coming back to us and that way they can support it themselves.”

Low rate production of the  Broadsword Spine has begun in the United Kingdom.

Wilson said when production increased, the company would work to distribute the product to the Asia-Pacific region from its Adelaide base next year.

Land Forces is the Southern Hemisphere’s premier defence industry exhibition and has more than 400 participating exhibition companies from about 20 countries as well as about 11,000 trade visitors.

South Australian exhibitors at the event include University of South Australia, which has developed  camouflage cells for tanks, and Supashock, which has unveiled damping technology taken from race cars for use in army trucks.

– Caleb Radford 

This article was first published by The Lead South Australia on 8 September 2016. Read the original article here

HoloLense

HoloLens to revolutionise training

The Australian arm of global company Saab has partnered with Microsoft to build a range of ground-breaking training, education and other complex 3D Holographic applications for HoloLens.

Worn as goggles by users, Microsoft HoloLens is the first fully untethered, holographic computer, enabling interaction with high‑definition holograms.

Saab Australia, based in the South Australian capital Adelaide, is a defence, security and traffic management solutions provider specialising in computer based command and control systems.

Head of Training and Simulation Inger Lawes said the company had identified three initial markets: its traditional defence and security market, the enterprise market – primarily large corporations wanting bespoke applications to address a specific need – and internal applications for the company’s own development.

“A year or so ago we came across Microsoft’s work with holograms and specifically HoloLens and pretty quickly saw that this was a piece of technology that had the potential to revolutionise the way that training can be delivered but also a whole range of other things we are broadly involved in,” Lawes said.

“We want to produce applications that are at the sophisticated end of what HoloLens can do. For example there are a lot of games on this thing that are a lot of fun but that’s not where we want to be, we want to be at the upper end of what’s possible.”

Lawes said applications could range from training programs for school students and defence company employees to advanced assembly software for high-value manufacturers.

He said the company was initially focusing on internal training applications for HoloLens but would deliver an application for its first external customer in September.

“It’s pretty exciting because there’s nothing better than going from good ideas to actually fielding something in a relatively short time,” he said.

“We want to stay within our business of defence and security but we also want to explore applied markets such as using HoloLens to support sophisticated manufacturing.”

“We’re in such a great position with this technology because we really are in uncharted waters. We really don’t know what’s going to happen – we know it’s going to be fantastic but what direction we go we’ll see.”

Lawes said Microsoft had “gone out of its way” to help Saab establish a HoloLens studio in Adelaide and would provide the necessary hardware.

He said English language skills and an existing relationship with Microsoft made Saab Australia a logical choice.

“Microsoft are interested in helping us because Australia is a close friend of the United States, we speak English – everything that’s deployed on Hololens at the moment is in English – we’re able to work in the defence and security market and have developed a strong working relationship with their opposite numbers at Microsoft,” he said.

“Our plan is to set up globally in Adelaide. Our market then becomes near region but going into Europe on the back of our existing business relationships is also a real possibility.

“So when we are up and running this time next year we’ll be an export business as well as a domestic supplier.

“Every conversation we have with this technology reveals another good idea and for us it’s really exciting to be involved.”

– Andrew Spence

This article was first published by The Lead on 13 April 2016. Read the original article here.

Alex Zelinsky — Cooperative Research Centres

Partnering for research impact

The Cooperative Research Centres Program (CRC) links research, education and end users, creating a synergy that fosters innovation. Now in its 24th year, the program has led to the development of beneficial new technologies in areas as diverse as contact lenses, financial markets and advanced composite materials.

Defence is just one beneficiary of the CRC Program. For example, lifesaving improvements have been made to body armour and vehicle protection as a result of research into advanced materials and manufacturing techniques.

Safeguarding Australia will depend on our ability to use science and technology to increase the effectiveness of our people and systems. No single research organisation can meet all of Australia’s future needs – collaboration is key. The CRC Program has enabled participants – universities, publicly-funded research organisations and industry – to significantly increase the impact of their science and technology through teamwork.

“No single research organisation can meet all of Australia’s future needs – collaboration is key.”

The Defence Science and Technology Organisation (DSTO) is supporting the new Data to Decisions CRC. This CRC will focus on creating the tools, techniques and workforce to unlock big data. Specific areas include tracking and sensor fusion techniques, visual analytics, cyber data, elastic search tools, speech and text processing, and detecting objects of interest in large imagery datasets.

Through the CRC Program, DSTO will continue to work with industry and publicly-funded agencies to create a vibrant culture of innovation, nurture the next generation of scientists and ensure that research has real impact.

– Dr Alex Zelinsky