Tag Archives: Autism CRC

Early Career Researchers

Early career researchers take the stage

The Showcasing Early Career Researchers Competition celebrates good research that is well communicated. Entrants were asked to submit a 30-second video conveying the aim of their research. Five finalists were selected from 41 entrants to attend the 2017 CRC Association Annual Conference in Canberra, to give a 5-minute presentation. An audience vote at the Collaborate Innovate conference determined the winner. 

Meet the five Showcasing Early Career Researchers finalists and see a 30 second snapshot of their work. 

WINNER 2017

JULIE BEADLE – The HEARing CRC

HEARING LOSS IN OLDER ADULTS

early career researchers

Many older adults struggle to understand speech in everyday noisy situations, even when they perform well on traditional hearing tests. For my PhD, I am investigating how age-related changes in cognitive functioning contribute to this all too common situation. I aim to develop a listening test that is reflective of communication in real life and examine how age and cognitive skills like attention and memory are related to performance on this test.

Watch Julie’s video

FINALISTS 2017 

JACQUILINE DEN HOUTING – Autism CRC

TOO ANXIOUS TO ACHIEVE

early career researchers

Around 40% of autistic people experience anxiety, and autistic people also tend to underperform academically. In the non-autistic population, a link between these two issues has been found.

In my research, I am using assessments of anxiety and academic achievement with a group of autistic students, to identify whether the same link exists within the autistic community. These findings could inform support options for autistic students, allowing for improved mental health and academic outcomes.

Watch Jacquiline’s video

DORIS GROSSE – Space Environment Research Centre

MANAGING SPACE DEBRIS

early career researchers

Several 100,000 space debris objects orbiting Earth are threatening to collide with and destroy our satellites networks. To prevent those collisions, a ground based laser can be aimed at the debris objects moving them out of the way with the help of photon pressure. The atmosphere, however, distorts the laser beam. The Adaptive Optics system that I am building compensates for those distortions so that the laser beam can be focused correctly on the object in space and hence preventing collisions.

Watch Doris’s video

TOMAS REMENYI – Antarctic Climate & Ecosystems CRC

TACKLING CLIMATE CHANGE

Early career researchers

The Climate Futures Team translates fine-scale, regional climate model output into useful, usable tools that are used by decision makers in industries across Australia. Our focus is on working closely with industry during research design, and throughout the process, to ensure the outputs of our research are directly relevant to our stakeholders and align with their decision making frameworks.

Watch Tomas’s video

MELISSA SCOTT – Autism CRC

WORKPLACES FOR ALL

Early career researchers

Despite people with autism having high levels of skills and the desire to work, they remain unemployed. Many employers are hesitant to hire people with autism due to their lack of confidence and knowledge about autism. To assist employers to better understand autism and their specific needs in the workplace, the Integrated Employment Success Tool (IEST) has been developed. The IEST is a practical “tool kit” with strategies to help employers tailor the workplace for success for people with autism.

Watch Melissa’s video

This article on the Showcasing Early Career Researchers Competition was first published by the CRC Association. Read the original article here.

autism diagnosis

Biobank speeds autism diagnosis

The Autism CRC is building Australia’s first Autism Biobank, with the aim of diagnosing autism earlier and more accurately using genetic markers. Identifying children at high risk of developing autism at 12 months of age was “a bit of a holy grail”, says Telethon Kids Institute’s head of autism research Professor Andrew Whitehouse, who will be leading the Biobank. Researchers think the period between 12–24 months of age is “a key moment” in brain development, he adds.

Autism Diagnosis
Professor Andrew Whitehouse, Head of the Developmental Disorders Research Group at the Telethon Kids Institute

As with other neurodevelopmental disorders, a diagnosis of autism is based on certain behaviours, but these only begin to manifest at a diagnosable level between the ages of two and five. Whitehouse says while there are great opportunities for therapy at these ages, researchers believe an earlier diagnosis will make the therapy programs more effective. Some 12-month-old children already exhibit behaviours associated with the risk of developing autism, for example not responding to their name, but currently doctors can’t conclusively diagnose autism at this early age.

“If we can start our therapies at 12 months, we firmly believe they’ll be more effective and we can help more kids reach their full potential,” says Whitehouse.

The biology of autism varies greatly between individuals, and it appears a combination of environmental factors and genes are involved – up to 100 genes may play a role in its development. Studying large groups of people is the only way to get a full understanding of autism and potentially identify genes of importance.

To do this, the Biobank collects DNA samples from 1200 families with a history of autism – children with autism aged 2–17 years old, who are recruited through therapy service providers, and their parents – as well as samples from control families who do not have a history of autism.

autism diagnosis
DNA samples are taken at the Telethon Kids Institute and sent to the ABB Wesley Medical Research Tissue Bank to be analysed for genetic biomarkers. Credit: Telethon Kids Institute

The samples are then shipped to the ABB Wesley Medical Research Tissue Bank in Brisbane for the Biobank’s creation. Here, they are analysed for genetic biomarkers using genome wide sequencing – determining DNA sequences at various points along the genome that are known to be important in human development. Whitehouse says they are also planning to conduct metabolomic and microbiomic analyses on urine and faeces.

“It’s the biggest research effort into autism ever conducted in Australia,” he says.

The goal is to use the results to develop a genetic test that can be conducted with 12-month-old children who are showing signs of autism. The samples will also be stored at the Biobank for future research.

The aim is to expand internationally, so that researchers can exchange data with teams around the globe who are doing similar work, thus increasing the sample size.

– Laura Boness

If your child has been diagnosed with autism and you would like to find out about participating in the Autism CRC Biobank, click here.

www.autismcrc.com.au