Tag Archives: Antarctic Climate & Ecosystems CRC

Early Career Researchers

Early career researchers take the stage

The Showcasing Early Career Researchers Competition celebrates good research that is well communicated. Entrants were asked to submit a 30-second video conveying the aim of their research. Five finalists were selected from 41 entrants to attend the 2017 CRC Association Annual Conference in Canberra, to give a 5-minute presentation. An audience vote at the Collaborate Innovate conference determined the winner. 

Meet the five Showcasing Early Career Researchers finalists and see a 30 second snapshot of their work. 

WINNER 2017

JULIE BEADLE – The HEARing CRC

HEARING LOSS IN OLDER ADULTS

early career researchers

Many older adults struggle to understand speech in everyday noisy situations, even when they perform well on traditional hearing tests. For my PhD, I am investigating how age-related changes in cognitive functioning contribute to this all too common situation. I aim to develop a listening test that is reflective of communication in real life and examine how age and cognitive skills like attention and memory are related to performance on this test.

Watch Julie’s video

FINALISTS 2017 

JACQUILINE DEN HOUTING – Autism CRC

TOO ANXIOUS TO ACHIEVE

early career researchers

Around 40% of autistic people experience anxiety, and autistic people also tend to underperform academically. In the non-autistic population, a link between these two issues has been found.

In my research, I am using assessments of anxiety and academic achievement with a group of autistic students, to identify whether the same link exists within the autistic community. These findings could inform support options for autistic students, allowing for improved mental health and academic outcomes.

Watch Jacquiline’s video

DORIS GROSSE – Space Environment Research Centre

MANAGING SPACE DEBRIS

early career researchers

Several 100,000 space debris objects orbiting Earth are threatening to collide with and destroy our satellites networks. To prevent those collisions, a ground based laser can be aimed at the debris objects moving them out of the way with the help of photon pressure. The atmosphere, however, distorts the laser beam. The Adaptive Optics system that I am building compensates for those distortions so that the laser beam can be focused correctly on the object in space and hence preventing collisions.

Watch Doris’s video

TOMAS REMENYI – Antarctic Climate & Ecosystems CRC

TACKLING CLIMATE CHANGE

Early career researchers

The Climate Futures Team translates fine-scale, regional climate model output into useful, usable tools that are used by decision makers in industries across Australia. Our focus is on working closely with industry during research design, and throughout the process, to ensure the outputs of our research are directly relevant to our stakeholders and align with their decision making frameworks.

Watch Tomas’s video

MELISSA SCOTT – Autism CRC

WORKPLACES FOR ALL

Early career researchers

Despite people with autism having high levels of skills and the desire to work, they remain unemployed. Many employers are hesitant to hire people with autism due to their lack of confidence and knowledge about autism. To assist employers to better understand autism and their specific needs in the workplace, the Integrated Employment Success Tool (IEST) has been developed. The IEST is a practical “tool kit” with strategies to help employers tailor the workplace for success for people with autism.

Watch Melissa’s video

This article on the Showcasing Early Career Researchers Competition was first published by the CRC Association. Read the original article here.

Collaborate or crumble

Collaborate or crumble

Bookshelves in offices around Australia groan under the weight of unimplemented reports of research findings. Likewise, the world of technology is littered with software and gadgetry that has failed to gain adoption, for example 3D television and the Apple Newton. But it doesn’t have to be this way.

Adoption of research is a critical success measure for Cooperative Research Centres (CRCs). One CRC in particular, the CRC for Water Sensitive Cities, has succeeded in having its research adopted by governments, companies and even the United Nations. Its secret is fruitful collaborations spanning diverse academic disciplines to deliver usable results. These are the kind of collaborations CRCs are well placed to deliver, argues Professor Rebekah Brown, project leader and former Chief Research Officer of the CRC for Water Sensitive Cities and director of the Monash Sustainability Institute.

The best are not always adopted. To change that, says Brown, developers need to know how their research solutions will be received and how to adapt them so people actually want them.

“Physical scientists, for example, benefit from understanding the political, social and economic frameworks they’re operating in, to position the science for real-world application,” she says.

The big-picture questions around knowledge and power, disadvantage and information access, political decision-making, community needs and aspirations, policy contexts and how values are economised – these are the domains of the social sciences. When social science expertise is combined with that of the physical sciences, for example, the research solutions they produce can have a huge impact. In the case of the CRC for Water Sensitive Cities, such solutions have influenced policy, strategy and regulations for the management of urban stormwater run-off, for example. Brown and her colleagues have found it takes a special set of conditions to cultivate this kind of powerful collaborative research partnership.

The CRC for Water Sensitive Cities has seen considerable growth. It started in 2005 as a $4.5 million interdisciplinary research facility with 20 Monash University researchers and PhD students from civil engineering, ecology and sociology. The facility grew over seven years to become a $120 million CRC with more than 85 organisations, including 13 research institutes and other organisations such as state governments, water utilities, local councils, education companies and sustainability consultancies. It has more than 230 researchers and PhD students, and its work has been the basis for strategy, policy, planning and technology in Australia, Singapore, China and Israel.

in text green corridor
Blue and green corridors in urban areas are part of the CRC for Water Sensitive Cities’ research into managing water as the world becomes increasingly urbanised.

In a 2015 Nature special issue, Brown and Monash University colleagues Ana Deletic and Tony Wong, project leader and CEO respectively of the CRC for Water Sensitive Cities, shared their ‘secret sauce’ on bridging the gap between the social and biophysical sciences, which allowed them to develop a partnership blueprint for implementing urban water research.


8 tips to successful collaboration

Rebekah Brown
Professor Rebekah Brown, courtesy of the Monash Sustainability Institute

Cultivating interdisciplinary dialogue and forming productive partnerships takes time and effort, skill, support and patience. Brown and her colleagues suggest the following:

1 Forge a shared mission to provide a compelling account of the collaboration’s overall goal and to maintain a sense of purpose for all the time and effort needed to make it work;

2 Ensure senior researchers are role models, contributing depth in their discipline and demonstrating the skills needed for constructive dialogue;

3 Create a leadership team composed of people from multiple disciplines;

4 Put incentives in place for interdisciplinary research such as special funding, promotion and recognition;

5 Encourage researchers to put their best ideas forward, even if unfinished, while being open to alternative perspectives;

6 Develop constructive dialogue skills by providing training and platforms for experts from diverse disciplines and industry partners to workshop an industry challenge and find solutions together;

7 Support colleagues as they move from being I-shaped to T-shaped researchers, prioritising depth early on and embracing breadth by building relationships with those from other fields;

8 Run special issues of single-discipline journals that focus on interdisciplinary research and create new interdisciplinary journals with T-shaped editors, peer-reviewers or boards.

Source: Brown, R.R, Deletic, A. and Wong, T.H.F (2015), How to catalyse collaboration, Nature, 525, pp. 315-317.


A recent Stanford University study found almost 75% of cross-functional teams within a single business fail. Magnify that with PhD research and careers deeply invested in niche areas and ask people to work with other niche areas across other organisations, and it all sounds impossible. Working against resistance to collaborate requires time and effort.

Yet as research partnerships blossom, so do business partnerships. “Businesses don’t think of science in terms of disciplines as scientists do,” says Brown. “Researchers need to be able to tackle complex problems from a range of perspectives.”

Part of the solution lies in the ‘shape’ of the researchers: more collaborative interdisciplinary researchers are known as ‘T-shaped’ because they have the necessary depth of knowledge within their field (the vertical bar of the T), as well as the breadth (the horizontal bar) to look beyond it as useful collaborators – engaging with different ways of working.

Some scholars, says Brown, tend to view their own discipline as having the answer to every problem and see other disciplines as being less valuable. In some ways that’s not surprising given the lack of exposure they may have had to other disciplines and the depth of expertise they have gained in their own.

“At the first meeting of an interdisciplinary team, they might try to take charge, for example talk but not listen to others or understand their contribution. But in subsequent meetings, they begin to see the value the other disciplines bring – which sometimes leaves them spellbound.

“It’s very productive once people reach the next stage in a partnership where they develop the skills for interdisciplinary work and there’s constructive dialogue and respect,” says Brown.

In a recent article in The Australian, CSIRO chief executive and laser physicist Dr Larry Marshall describes Australians as great inventors but he emphasises that innovation is a team sport and we need to do better at collaboration. He points out that Australia has the lowest research collaboration rates in the Organization for Economic Cooperation and Development (OECD), and attributes this fact to two things – insufficient collaboration with business and scientists competing against each other.

“Overall, our innovation dilemma – fed by our lack of collaboration – is a critical national challenge, and we must do better,” he says.

Brown agrees, saying sustainability challenges like those addressed by the CRC for Water Sensitive Cities are “grand and global challenges”.

“They’re the kind of ‘wicked problem’ that no single agency or discipline, on its own, could possibly hope to resolve.”

The answer, it seems, is interdisciplinary.


Moving forward

Alison Mitchell
Alison Mitchell, courtesy of Vitae

There’s a wealth of great advice that CRCs can tap into. For example the Antarctic Climate & Ecosystems CRC approached statistical consultant Dr Nick Fisher at ValueMetrics Australia, an R&D consultancy specialising in performance management, to find the main drivers of the CRC’s value as perceived by its research partners, so the CRC could learn what was working well and what needed to change.

Fisher says this kind of analysis can benefit CRCs at their formation, and can be used for monitoring and in the wind-up phase for final evaluation.

When it comes to creating world-class researchers who are T-shaped and prepped for research partnerships, Alison Mitchell, a director of Vitae, a UK-based international program dedicated to professional and career development for researchers, is an expert. She describes the Vitae Researcher Development Framework (RDF), which is a structured model with four domains covering the knowledge, behaviour and attributes of researchers, as a significant approach that’s making a difference to research careers worldwide.

The RDF framework uses four ‘lenses’ – knowledge exchange, innovation, intrapreneurship [the act of behaving like an entrepreneur while working with a large organisation] and entrepreneurship – to focus on developing competencies that are part and parcel of a next generation research career. These include skills for working with academic research partners and industry.


– Carrie Bengston

watersensitivecities.org.au

www.acecrc.org.au