Tag Archives: photons

Early Career Researchers

Early career researchers take the stage

The Showcasing Early Career Researchers Competition celebrates good research that is well communicated. Entrants were asked to submit a 30-second video conveying the aim of their research. Five finalists were selected from 41 entrants to attend the 2017 CRC Association Annual Conference in Canberra, to give a 5-minute presentation. An audience vote at the Collaborate Innovate conference determined the winner. 

Meet the five Showcasing Early Career Researchers finalists and see a 30 second snapshot of their work. 

WINNER 2017

JULIE BEADLE – The HEARing CRC

HEARING LOSS IN OLDER ADULTS

early career researchers

Many older adults struggle to understand speech in everyday noisy situations, even when they perform well on traditional hearing tests. For my PhD, I am investigating how age-related changes in cognitive functioning contribute to this all too common situation. I aim to develop a listening test that is reflective of communication in real life and examine how age and cognitive skills like attention and memory are related to performance on this test.

Watch Julie’s video

FINALISTS 2017 

JACQUILINE DEN HOUTING – Autism CRC

TOO ANXIOUS TO ACHIEVE

early career researchers

Around 40% of autistic people experience anxiety, and autistic people also tend to underperform academically. In the non-autistic population, a link between these two issues has been found.

In my research, I am using assessments of anxiety and academic achievement with a group of autistic students, to identify whether the same link exists within the autistic community. These findings could inform support options for autistic students, allowing for improved mental health and academic outcomes.

Watch Jacquiline’s video

DORIS GROSSE – Space Environment Research Centre

MANAGING SPACE DEBRIS

early career researchers

Several 100,000 space debris objects orbiting Earth are threatening to collide with and destroy our satellites networks. To prevent those collisions, a ground based laser can be aimed at the debris objects moving them out of the way with the help of photon pressure. The atmosphere, however, distorts the laser beam. The Adaptive Optics system that I am building compensates for those distortions so that the laser beam can be focused correctly on the object in space and hence preventing collisions.

Watch Doris’s video

TOMAS REMENYI – Antarctic Climate & Ecosystems CRC

TACKLING CLIMATE CHANGE

Early career researchers

The Climate Futures Team translates fine-scale, regional climate model output into useful, usable tools that are used by decision makers in industries across Australia. Our focus is on working closely with industry during research design, and throughout the process, to ensure the outputs of our research are directly relevant to our stakeholders and align with their decision making frameworks.

Watch Tomas’s video

MELISSA SCOTT – Autism CRC

WORKPLACES FOR ALL

Early career researchers

Despite people with autism having high levels of skills and the desire to work, they remain unemployed. Many employers are hesitant to hire people with autism due to their lack of confidence and knowledge about autism. To assist employers to better understand autism and their specific needs in the workplace, the Integrated Employment Success Tool (IEST) has been developed. The IEST is a practical “tool kit” with strategies to help employers tailor the workplace for success for people with autism.

Watch Melissa’s video

This article on the Showcasing Early Career Researchers Competition was first published by the CRC Association. Read the original article here.

Quantum computing revolution

Technology that encodes information in photons (particles of light) could lead to vastly increased speeds of telecommunications and computing and significantly enhanced levels of cybersecurity – and a quantum computing revolution.

However, to date, quantum information processing has only been shown in some materials, many of which would be impractical to manufacture because of limitations of size, or the need to keep them at ultra-low (cryogenic) temperatures.

Now, for the first time, researchers from the University of Technology Sydney (UTS) have developed a room temperature, thin material that emits single photons. The results were announced in a letter published in Nature Nanotechnology on 26 Oct 2015.

Quantum information processing

Quantum computing revolution
UTS research team, from left: Igor Aharonovich, Trong Toan Tran, Kerem Bray, Mike Ford and Milos Toth.

Quantum information processing seeks to use photons to encode information to create a quantum ‘bit’ of information, or qubit. Qubits are to quantum computers what bytes are for computers today – a vital ‘unit’ of information. But qubits can operate much faster than the bytes we use in computing today, and because of their nature could revolutionise not only computing speeds but also cybersecurity, as they can encrypt information in a near flawless system.

Previously, single-photon-emitting devices have been created in semiconductors such as diamond and silicon carbide, or exotic materials such as nanocrystal quantum dots or carbon nanotubes, the researchers say. But ideally, a quantum computing chip would need to be created from a product that is easily manufactured.

“We found the first 2D, single photon emitter that works at room temperature,” said Professor Mike Ford, Associate Dean (Research and Development), Faculty of Science at UTS and co-author of the new study.

“There are other 2D materials that emit single photons but you have to freeze them down to liquid nitrogen or liquid helium temperatures [-200°C to -269°C],” he said.

Two-dimensional materials are crystalline structures consisting of a single layer of atoms. A well-known 2D material is graphene – a hexagonal lattice of carbon atoms. Researchers at UTS used defects in single layers of hexagonal boron nitride to explore the materials’ quantum emitting properties and found that it was able to emit a single photon in one unimaginably tiny pulse of light.

Quantum computing revolution
Image by UTS: 2D nano-flakes emit red photons for quantum communication technologies.

“That’s important because one of the big goals is to make optical computer chips that can operate based on light rather than electrons, therefore operating much faster with less heat generation,” said Ford.

“Traditional LEDs [Light Emitting Diodes] emit a stream of photons. But by making light sources that emit one photon at a time, you can control the emission of individual photons,” he said.

This is critical to the development of quantum communication technologies because single photons are needed in order to tap into the quantum effects of particles.

“The emission of individual photons is important for quantum communications because it means that encryption techniques can be put in place to make systems more secure,” said Ford.

“You can create very secure communication systems using single photons,” explained Associate Professor Igor Aharonovich. “Each photon can be employed as a qubit (quantum bit, similarly to standard electronic bits), but because one cannot eavesdrop on single photons, the information is secure.”

Quantum computing revolution

This breakthrough could open new opportunities in quantum optics, a field of quantum physics dealing specifically with the interaction of photons with matter, and could herald the beginning of a transition to technologies and devices using photons, rather than electrons, to carry information.

Because hexagonal boron nitride emits quantum photons at room temperature, it can be placed into very small devices, like nanophotonic circuits.

“This material is very easy to fabricate,” said PhD student Trong Toan Tran. “It’s a much more viable option because it can be used at room temperature; it’s cheap, sustainable and is available in large quantities.”

“Ultimately we want to build a ‘plug and play’ device that can generate single photons on demand, which will be used as a first prototype source for scalable quantum technologies that will pave the way to quantum computing with hexagonal boron nitride,” he said.

– Carl Williams