Tag Archives: space debris

space roadmap banner

Space roadmap unlocks future growth opportunities for Australia

Space: A Roadmap for unlocking future growth opportunities for Australia, was launched by the Hon Karen Andrews MP at the 18th Australian Space Research Conference on the Gold Coast, held on September 24-26, 2018.

Australian space industries already contribute $3.9 billion a year to the economy and  the business opportunities and jobs growth potential is significant, said Minister Andrews.

Once dominated by billion-dollar government programs, the industry landscape of global space activity and space exploration is now composed of SMEs which provide an array of technology and services. “The benefits from a growing space industry are very local”, said Minister Andrews, highlighting Gold Coast rocket business Gilmour Space Technologies and Opaque Space, a Melbourne-based VR company  working with NASA on an astronaut training simulator.

“We have what it takes to gain a greater share of the market and build a new industry for our nation.”

The industry roadmap report was developed by CSIRO Futures, the strategy advisory arm of Australia’s national space agency. It highlights three key areas for potential development: space exploration and utilisation, space-derived services and space object tracking.  

  1.    The reports recommends that Australia leverage our nation’s industrial and research strengths across astronomy, mining, manufacturing, medicine, agriculture and robotics, and apply these skills to support robotic and human space exploration missions. This will include the development of innovative systems for long-term settlement in space, including habitation and life support.
  2.    Earth observation technology, including satellite communications and positioning, navigation and timing data, can aid in developing businesses which address disaster and water management.
  3.    Australia can take advantage of our geographic position in the Southern Hemisphere to further our work with international programs to track and manage space debris and enable deep space communication.

Key technologies to focus on include power and propulsion systems, autonomous systems and robotics to make missions safer, habitat and life support (including food, protective clothing and housing) and in-situ resource utilisation. The report also emphasises the broader benefits of growing the Australian space industry, as a valuable source of innovation for Earth-based industries, such as communications, agriculture, mining and transport.  

The Australian Space Agency (ACA) was established by the Government with the mandate to triple the size of our domestic space industry up to $12 billion by 2030 and generate 20,000 new jobs.

“Our purpose is to transform and grow a globally respected Australian space industry that inspires Australia”, said Dr Megan Clark AC, the head of the ACA.

Dr Larry Marshall, CSIRO Chief Executive, said that he looks forward to the partnership opening up Australian markets, improving productivity, creating new jobs, and securing our STEM talent pipeline into the future. “We are here to help Australia secure our footprint in the space ecosystem,” he said.

In 2017, CSIRO secured access to one of the world’s most advanced high-performance satellites, the NovaSAR satellite. The Satellite was launched on 17 September 2018 and the CSIRO holds a 10% share of tasking and acquisition time over the next seven years. This gives Australian scientists control over the satellite’s data collection over our region and will extend Australian Earth Observation capabilities.

A selection of the research projects associated with NovaSaR include disaster identification and monitoring, improved infrastructure and agriculture mapping, biomass monitoring, flood risk assessment and detection of illegal deforestation and shipping activities.

“A new space agency is not just about industry. It is about creating aspirations about exploring the universe,” said Minister Andrews. “Our space agency will help promote opportunities for our young people and give them the chance to aspire to something they many not even have thought about…Growing our space industry is about growing our future prosperity as a nation.”

– Larissa Fedunik

Space debris

Shining a light on space debris

Featured image above: high-power lasers can gently nudge space debris out of the way of an operating satellite. Photo: Lyle Roberts

Each piece of debris in low earth orbit circles the planet around every 90 minutes, placing $1 trillion worth of space infrastructure at risk of collision and serious damage.

In May last year, a window on the International Space Station was chipped by a small piece of space debris believed to be a tiny flake of paint, which highlights the potential for more significant damage.

The idea of changing the orbit of debris using the photon pressure from lasers has been around for a while, but the Space Environment Research Centre (SERC) in Canberra is getting close to demonstrating proof of the concept. They plan to launch dummy satellites, each the size of a shoebox, into low orbit (around 570km) and fire at them with ground-based lasers to slow them down. The satellites will be equipped with sensors that can measure the amount of light hitting the target and the changes in orbit achieved with each pass.

In theory, this technique could be used to bring objects closer to Earth so that they eventually burn up in the atmosphere.

“These are very small forces; you need to know a long way in advance there’s going to be a collision. You can then use the photon pressure to change the orbit over time,” says Dr Steve Gower, general manager of SERC.

SERC plans to launch the first satellite in late 2018 and begin the demonstration phase the following year. The key industry participants on the project are EOS Space Systems and Lockheed Martin, and the project will use  all-Australian technology.

While this technique lacks the precision required to stop a speeding fleck of paint, it could be effective in manoeuvring objects with a high surface-area-to-mass ratio – think the size and weight of a computer monitor.

“We want a large surface area so we can use the maximum amount of particles of light, or photons, hitting the object,” says Gower.

This research program applies the knowledge gleaned from SERC’s other programs, which focused on tracking objects and predicting collisions. If successful, the potential for commercialisation includes offering conjunction analysis so satellite owners can move their assets out of the way of approaching debris or remove the offending space junk before a possible collision.

Find out more at serc.org.au

– Chloe Walker

For more CRC discovery, read KnowHow 2017.

You might also enjoy Finding Space Industry’s Next Elon Musk.

Early Career Researchers

Early career researchers take the stage

The Showcasing Early Career Researchers Competition celebrates good research that is well communicated. Entrants were asked to submit a 30-second video conveying the aim of their research. Five finalists were selected from 41 entrants to attend the 2017 CRC Association Annual Conference in Canberra, to give a 5-minute presentation. An audience vote at the Collaborate Innovate conference determined the winner. 

Meet the five Showcasing Early Career Researchers finalists and see a 30 second snapshot of their work. 

WINNER 2017

JULIE BEADLE – The HEARing CRC

HEARING LOSS IN OLDER ADULTS

early career researchers

Many older adults struggle to understand speech in everyday noisy situations, even when they perform well on traditional hearing tests. For my PhD, I am investigating how age-related changes in cognitive functioning contribute to this all too common situation. I aim to develop a listening test that is reflective of communication in real life and examine how age and cognitive skills like attention and memory are related to performance on this test.

Watch Julie’s video

FINALISTS 2017 

JACQUILINE DEN HOUTING – Autism CRC

TOO ANXIOUS TO ACHIEVE

early career researchers

Around 40% of autistic people experience anxiety, and autistic people also tend to underperform academically. In the non-autistic population, a link between these two issues has been found.

In my research, I am using assessments of anxiety and academic achievement with a group of autistic students, to identify whether the same link exists within the autistic community. These findings could inform support options for autistic students, allowing for improved mental health and academic outcomes.

Watch Jacquiline’s video

DORIS GROSSE – Space Environment Research Centre

MANAGING SPACE DEBRIS

early career researchers

Several 100,000 space debris objects orbiting Earth are threatening to collide with and destroy our satellites networks. To prevent those collisions, a ground based laser can be aimed at the debris objects moving them out of the way with the help of photon pressure. The atmosphere, however, distorts the laser beam. The Adaptive Optics system that I am building compensates for those distortions so that the laser beam can be focused correctly on the object in space and hence preventing collisions.

Watch Doris’s video

TOMAS REMENYI – Antarctic Climate & Ecosystems CRC

TACKLING CLIMATE CHANGE

Early career researchers

The Climate Futures Team translates fine-scale, regional climate model output into useful, usable tools that are used by decision makers in industries across Australia. Our focus is on working closely with industry during research design, and throughout the process, to ensure the outputs of our research are directly relevant to our stakeholders and align with their decision making frameworks.

Watch Tomas’s video

MELISSA SCOTT – Autism CRC

WORKPLACES FOR ALL

Early career researchers

Despite people with autism having high levels of skills and the desire to work, they remain unemployed. Many employers are hesitant to hire people with autism due to their lack of confidence and knowledge about autism. To assist employers to better understand autism and their specific needs in the workplace, the Integrated Employment Success Tool (IEST) has been developed. The IEST is a practical “tool kit” with strategies to help employers tailor the workplace for success for people with autism.

Watch Melissa’s video

This article on the Showcasing Early Career Researchers Competition was first published by the CRC Association. Read the original article here.