Tag Archives: OECD

Crossing the cultural divide

Australia’s future health and economy is a vibrant, interactive ecosystem with science, technology, engineering and maths (STEM) at its core. STEM is central – and essential – to Australia’s ongoing success in the next 50 years. Australia is considered an incredible place to do cutting-edge research, pursue blue-sky ideas and commercialise innovative products. Pioneering discoveries fuel the innovation process. Students cannot wait to enrol in science and maths. Policies are developed using peer-reviewed evidence and broad consultation. Aspirational goals are backed by practical solutions and half of our STEM leaders are women – it’s the norm.

Sounds good doesn’t it?

To excel in science and innovation, however, Australia needs a major culture shift. We can all ‘talk the talk’, but as OECD figures demonstrate, we cannot ‘walk the walk’. Australia rates lowest compared to other OECD countries when it comes to business-research collaborations – not just large businesses, but small to medium-sized enterprises as well.

Academia blames industry. Industry blames academia. Everyone blames the government. It’s time to turn the pointing finger into a welcoming handshake and engage across sectors to actually make innovation happen.

Literally thousands of researchers in this country want to see our academic and industry leaders reach across the divide and make change happen. With every decision made, their future is impacted.

Paradigm-shifting science and innovation takes time and requires a diverse workforce of highly-skilled researchers and professionals that specialise in these fields.

The lack of a skilled workforce and poor collaboration are significant barriers to innovation. As part of the National Innovation and Science Agenda, the industry engagement and impact assessment aims to incentivise greater collaboration between industry and academia by examining how universities are translating their research into social and economic benefits.

Australian academic institutions have begun to break down silos within their own research organisations with some success. In medical research for example, the breadth and scale of interdisciplinary collaborative projects has expanded exponentially – spanning international borders, requiring a range of skills and expertise, terabytes of data, and years of research.

Research teams have become small companies with synergistic subsidiaries – diagnostic, basic, translational and clinical teams – working toward a common goal.

Yet their engagement with industry is low. Industry struggles to navigate the ever-changing complex leadership structures in higher education and research. When you speak one-on-one with researchers and industry leaders, however, they seem almost desperate to cross the divide and connect! It’s a detrimental dichotomy.

How can we harness the full potential of our research workforce?

We can energise innovation by fostering a culture that values basic research as well as translation of discoveries to product, practice and policy. A culture that opens the ivory tower and is not so sceptical of industry-academia engagement. That responds to failure with resilience and determination rather than deflating, harsh judgement. That sees the potential of our young researchers.

We need to lose the tall poppy syndrome and openly celebrate the success and achievement of others. We must hold ourselves to higher standards and in particular, women must be equally recognised and rewarded for their leadership.

As a nation, we must ensure we are prepared and resourced for the challenges ahead. Not only do we need the best equipment and technologies, but we also need a readily adaptable workforce that is highly-skilled to address these issues.

To facilitate a culture shift and increase engagement with business and industry, we need to provide researchers the skills and know-how, as well as opportunities to hone these skills. Young researchers are ready to engage and hungry to learn; and they must be encouraged to do so without penalty.

They then need to be connected with industry leaders to identify the qualities and expertise they need to strengthen, and to extend their network.

We can change this now. The solution is not expensive. It is simply about letting down our guard and providing real opportunities to meet, to connect, to network, to exchange ideas and expertise – and to share that welcoming handshake.

Dr Marguerite Evans-Galea

Executive Director, Industry Mentoring Network in STEM, Australian Academy of Technological Science and Engineering, Melbourne

CEO and Co-founder, Women in STEMM Australia

Read next: Professor David Lloyd, Vice Chancellor of the University of South Australia, believes university and industry have a shared purpose.

Spread the word: Help Australia become a collaborative nation! Share this piece on science and innovation using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Digital Disruption Thought Leadership Series here.

Research collaboration in the startup scene

Australia produces great research. But despite this, we somehow still manage to rank last in the OECD for collaboration between research and business.

It’s a disconnect that is well documented: a 2014 Department of Education report noted a low proportion of researchers working in business and academic industry research publications. A report by the Australian Academy of Technology and Engineering revealed a distinct lack of university research collaboration with industry and other end users. And the recently released Innovation and Science Australia report declared Australian industry unable to commercialise research.

Though the naysayers may abound, all hope is certainly not lost. There are steps that Australian research institutions and the startups that represent the future of business can take to overcome the disconnect and engage in effective research collaboration.

1. Establish a direct link between research institutions and startups

Working in research and industry silos will always present a challenge to collaboration. So, the first step to bridging the research collaboration gap is to create a direct line of access between universities and startups.

The easiest way to reach the largest number of startups is to create direct lines to innovation hubs, such as technology-focused incubators that work with startups and scale-ups that could benefit from accessing the research capabilities that are nurtured within Australian universities. 

This could take the form of a mutually-beneficial partnership, such as an industry secondment program for PhD students. Students would benefit from industry experience, while industry gains access to cutting-edge research capabilities and a potential talent pool for recruitment.

Whatever the partnership might look like in practice, by finding mutually beneficial solutions and cementing them within a concrete program, collaboration will likely be a natural outcome.

2. Understand and account for your differences

In any collaboration, working together requires working around the limitations of the other party.

As an example, the open nature of academic science can at times conflict with industry needs to protect the technologies they use. Academic research often moves more slowly due to its long-term focus, compared to industrial R&D that is driven by commercial deadlines and time-sensitive product development.

Understanding these differences upfront will allow collaborative measures and hedges to be set in place when forming a research collaboration to ensure neither party’s prerogatives are being infringed upon.

3. Identify and work towards common ground in your research collaboration

Once links have been created and differences understood and catered for, common ground can be identified, interests aligned and goals established.

Research could listen to the pain points of industry and formulate research that addresses the pain points, rather than trying to pitch a predefined project.

Conversely, industry might consider involving university research throughout the lifecycle of a project, rather than in an ad hoc fashion, to create a long-term culture of interdisciplinary collaboration and give greater meaning to research projects.

Regular interaction in the form of formal and informal meetings will ensure the research collaboration stays on track to meeting the objectives of both parties – particularly as they are likely to evolve.

By implementing all the above, our startups may have some chance of tapping into the brains of our prized research institutions to achieve sustainable and accelerated growth in the future.

Petra Andrén

CEO of Cicada Innovations

Read next: Professor Sharon Bell, board member of Ninti One, examines different approaches to collaboration and debunks the myth of individual creative genius.

Spread the word: Help Australia become a collaborative nation! Share this piece on research collaboration using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Digital Disruption Thought Leadership Series here.

Australian innovation system in focus

The most comprehensive review of the Australian innovation system ever conducted was released this week by Innovation and Science Australia (ISA). If it was your child’s school report, you’d be saying we better have a serious discussion over dinner.
 
The conversion might go something like:

ISA: “We’ve had this discussion before, Australia. We’ve got your report and it’s OK but when are you going to really step up?”

Australia: “It’s not bad though. The Knowledge Creation teacher likes me.”

ISA: “It’s not a matter of whether the teacher likes you, or you like the teacher. We just want the best for you and if you are going to have a great future, you’ve got to put in the hard work across the board, not just in the areas you enjoy. Everyone likes you, Australia, but that’s different to doing the best you can.”

Australia: “Yeah, I know I could do more in transfer and application, but you want me to be like Israel or Singapore and they never have any fun and just work all the time”.

 ISA: “We’ve never said you can’t have fun. But at some stage you need to put your head down and get on with some serious work.”

Australia: “Yeah, yeah, I know….”
 
You get the picture. The full report on the Australian innovation system can be found here.

The report concentrates on the three areas of knowledge creation, knowledge transfer and knowledge application and establishes 20 measures across these. Clear benchmarks are set out between Australia’s performance and the average of the top five OECD performers, which gives a pretty clear guidance for future improvement.

The 20 measures were whittled down from an initial group of over 200 and they’ll be the basis for measuring the impact of future policy change. The report’s performance assessment is fairly general across the three key areas, rather than specific at the program level.

The rubber will hit the road during the coming phase as ISA pulls together a strategic plan for innovation and science in Australia to 2030. It’s hard to disagree at the moment when the conclusions are that we need to do better in a number of general areas. The contentious part will come much more in the strategic planning and implementation stage where change will be needed.

The performance review, which runs to over 200 pages and more than 700 references, provides an excellent baseline for future evaluation and Innovation and Science Australia deserves credit for publication of this important body of work.

It has the potential to become the reference material for judging performance of programs and their contribution to an overall Australian innovation strategy. At the very least, the assessment identifies which programs are regularly, thoroughly and transparently reviewed and those that are not.

An obvious part of the coming strategic plan will be to ensure all parts of the Australian innovation system are independently reviewed on a regular basis so their contribution to the overall strategy is maximised.

But this is not just a report for the government or ISA, where they should be tasked to simply fix things. It should be used across business, research organisations and all levels of government because it pulls together international data and lays out clearly where we stand as a country.

The assessment is a solid base to build on and could give the much needed longer-term vision needed for innovation in Australia.

– Dr Tony Peacock, CEO of the CRC Association

Click here to read the Performance Review of the Australian Innovation, Science and Research System 2016.

This piece on the Australian Innovation System was first published by the CRC Association on 7 February 2017. Read the original article here

Australian research funding infographic

Featured image above: CSIRO has received significant budget cuts in recent years. Credit: David McClenaghan

The election is rapidly approaching, and all major parties – Liberal, Labor and Greens – have now made announcements about their policies to support science and research.

But how are we doing so far? Here we look at the state of science and research funding in Australia so you can better appreciate the policies each party has announced.

The latest OECD figures show that Australia does not fare well compared with other OECD countries on federal government funding research and development.

As a percentage of GDP, the government only spends 0.4% on research and development. This is less than comparable nations.

CC BY-ND

But looking at total country spending on research and development, including funding by state governments and the private sector, the picture is not so bleak: here Australia sits in the middle among OECD countries.

CC BY-ND

Over the years, there have been hundreds of announcements and new initiatives but this graph indicates that, in general, it has been a matter of rearranging the deck chairs rather than committing to strategic investments in research.

The Paul Keating Labor government made some investments. During the John Howard Liberal government’s years, there were ups and downs. The Kevin Rudd/Julia Gillard Labor governments were mostly up. And in Tony Abbott’s Liberal government, the graph suggests that it was mostly down with science.

CC BY-ND

Over the past decade, there have been some minor changes in funding to various areas, although energy has received the greatest proportional increase.

CC BY-SA

This pie chart reminds us that the higher education sector is a major provider of research and is highly dependent on government funding. It also tells us that business also conducts a great deal of research.

CC BY-ND

The timeline below shows that the government does listen and respond when issues arise. It has recognised the importance of the National Collaborative Research Infrastructure Scheme (NCRIS), the Australian Synchrotron and sustainable medical research funding by different initiatives.

But, sadly, one must remember that funding is effectively being shifted from one domain to another, and it has seldom been the case that significantly new commitments are made. The balance of red and blue shows how one hand gives while the other takes funding away.

CC BY-SA

This useful graph highlights the fact that Australian Research Council (ARC) funding now amounts to little more than the National Health and Medical Research Council’s funding.

This is remarkable, given that the ARC funds all disciplines, including sciences, humanities and social sciences, while the NHMRC essentially focuses on human biology and health.

CC BY-SA

This graphic also highlights the lack of any sustained funding strategy. The only clear trend is that the investment in the ARC has gradually declined and the NHMRC has grown.

This, in part, reflects the undeniable importance of health research. But it is also indicative of effective and coherent organisation and communication by health researchers. This has been more difficult to achieve in the ARC space with researchers coming from a vast array of disciplines.

– Merlin Crossley, Deputy Vice-Chancellor Education and Professor of Molecular Biology, UNSW Australia
– Les Field, Secretary for Science Policy at the Australian Academy of Science, and Senior Deputy Vice-Chancellor, UNSW Australia
This article was first published by The Conversation on June 22 2016. Read the original article here.

Innovating Australia

Australia faces a challenging period in shifting towards an ‘innovation economy’, with a drive towards greater participation in science and technology; an increased focus on commercialisation success; and partnering research with industry. But how will we get there?

In this unique series, leaders from government, industry and academia share their vision for Australia’s innovation future, including Australia’s Chief Scientist Alan Finkel, Telstra’s CTO Vish Nandlall, CEO of AusBiotech Anna Lavelle, entrepreneur, surgeon and inventor Fiona Woods, Chief Defence Scientist Alex Zelinksy, and the Vice Chancellors from QUT, Peter Coaldrake, and Western Sydney Uni Barney Glover, and many more.

Read the Thought Leadership Series: Australia’s Innovation Future, here. Commentaries will be published throughout the week.

The path forward

There is no doubt that Australian R&D often punches far above its weight for the size of the nation’s population. But for too long Australian invention has stalled at the crucial points in moving research from lab to marketplace. From a nation of thinkers, there has been too little product. Buoyed by the rich resources in the landscape, we have rested on our laurels, riding the sheep’s back or relying on our mineral wealth.

There are notable exceptions. Most Australians, for example, are familiar with the success of the cochlear implant, invented by Professor Graeme Clark and pioneered with a team of surgeons at Melbourne’s Royal Victorian Eye and Ear Hospital. This clever little device is now distributed in over 120 countries and has helped over 320,000 hearing-impaired patients. In the inaugural 2016 Top 25 Science Meets Business R&D spin-off list, this and other less familiar success stories – including companies just starting to make their mark – were noted and celebrated.

In December 2015, the Turnbull government pushed an agenda on innovation – the so-called #ideas boom. The innovation agenda clearly indicates that Australia must move from a resource-based economy to a knowledge-based economy. It highlights the poor track record of research commercialisation, and low rates of collaboration between industry and research organisations. The Organisation for Economic Cooperation and Development rates Australia as last or second last on the level of collaboration against other developed nations. So how much further forward does the ideas boom push us, and what more can be done?

The December 2015 agenda throws $1.1 billion towards steps to address stagnation in research commercialisation and business growth in STEM. This includes $200 million industry incentive to work with the CSIRO and Australian universities, and a 20% non-refundable tax offset for early stage investors. There’s also money for Australian businesses looking to relocate overseas, bonuses for universities collaborating and resources allocated towards raising awareness of the importance of STEM in education.

While the money sounds great, transitioning towards a knowledge economy is more than just a fiscal move – it requires a fundamental shift in the notion of what it is to be Australian. The pathway towards this mental reimagining is far from clear, and will involve people in business, education, research and communication industries to change their thinking, develop ideas and set in motion a totally different model of achievement.

In this thought leadership series, those stepping up to deliver on this challenge describe their vision of science, technology, engineering, maths, and medicine – in the way we do the research and in how we benefit from these fields – to describe their first step towards this brave new world. – Heather Catchpole

Read the Thought Leadership Series: Australian Innovation Future, here.

Contributors

Dr Alan Finkel AO, Chief Scientist of Australia

Dr Anna Lavelle, CEO and Executive Director of AusBiotech

Professor Peter Coaldrake AO, Vice-Chancellor of QUT

Dr Krystal Evans, CEO of the BioMelbourne Network

Professor Peter Klinken, Chief Scientist of Western Australia

Professor Barney Glover, Vice-Chancellor and President of Western Sydney University and Dr Andy Marks, Assistant Vice-Chancellor (Strategy and Policy) of Western Sydney University

Dr Cathy Foley, Chief of CSIRO’s Division of Materials Science and Engineering

Dr Alex Zelinsky, Chief Defence Scientist and Head of the Defence Science and Technology Group

Vish Nandlall, Chief Technology Officer of Telstra

Professor Fiona M Wood, FRACS AM, Director of the Burns Service of Western Australia and the Burn Injury Research Unit at the University of Western Australia

Everyday this week

John Pollaers, Chairman of the Australian Advanced Manufacturing Council

Robert Hillard, Managing Partner of Deloitte Consulting

Kim McKay AO, CEO and Executive Director of the Australian Museum

Philip Livingston, Founder and Managing Director of Redback Technologies

The advanced manufacturing flagship

We have a rich seam of transformative advanced manufacturers in Australia who are not only securing their own future; they are helping to underpin a sustainable Australian economy.

But our future in an uncompromising global economy is precarious. Few decision-makers in OECD countries believe they will remain prosperous without a thriving, high-tech manufacturing sector.

A prosperous Australia depends on supplying higher value solutions to the world – and the recent national focus on science, technology, engineering and mathematics (STEM) education is fundamental to this aspiration.

How can we, as a nation, facilitate this growth? The Federal Government’s Innovation and Science Agenda released last December is the most substantial recognition we have seen that advanced manufacturing is the future face of Australian industry. The agenda pulls a number of policy “levers”, and places unprecedented emphasis on leveraging our research excellence for greater commercial outcomes.

Of all the interventions of governments, however, the defence procurement “lever” obliterates all others.

Manufacturing’s best hope lies in “flagship” projects like Australia’s future submarine and shipbuilding programs. Some economists have estimated the knowledge spillovers from such programs produce multiplier impacts 2–3 times the initial investment. For example, one study estimates the Gripen multi-role combat aircraft project in Sweden generated at least 2.6 times the government investment in terms of additional production, and skills and knowledge transfer. What large national projects can mean for jobs growth, technology diffusion, skills development and market development in the short term is important. What they mean in the longer term is critical.


“The digitisation revolution will be a key enabler for Australian manufacturers to enter the global supply chain – it conquers distance and helps bring ideas into production sooner.”


For the advancement of Australian industry, we must ensure that Australian companies are actively engaged in the high value technology creation and development of large defence contracts. And these companies must be able to sustain their businesses through exports. Denmark and Sweden provide good examples of countries successfully exporting their defence capabilities. If Australia does not do the same, we doom our high value defence manufacturers to the same fate as the automotive sector.

Technological change doesn’t just bring disruption; it also brings opportunity. The digitisation revolution will be a key enabler for Australian manufacturers to enter the global supply chain – it conquers distance and helps bring ideas into production sooner. Digitisation will enable Australian manufacturers to leap ahead of many of our competitor nations.

And embracing the digital age requires greater emphasis on STEM education. In many industries and countries, the most in-demand occupations or specialties did not exist 10 or even five years ago, and the pace of change is set to accelerate. By one popular estimate, 65% of children entering primary school today will ultimately end up working in completely new job types that don’t yet exist.

With a thriving advanced manufacturing sector, employing a higher proportion of skilled engineers and scientists and successfully investing in research and development in order to stay at the leading edge in their sectors, we can ensure Australia’s continued prosperity.

John Pollaers, Chairman of the Australian Advanced Manufacturing Council

Read next: Vish Nandlall, Telstra’s Chief Technology Officer, on the skills we really need to be teaching our children.

Spread the word: Help to grow Australia’s innovation knowhow! Share this piece using the social media buttons below.

Be part of the conversation: Share your ideas on innovating Australia in the comments section below. We’d love to hear from you!

Collaborate or crumble

Bookshelves in offices around Australia groan under the weight of unimplemented reports of research findings. Likewise, the world of technology is littered with software and gadgetry that has failed to gain adoption, for example 3D television and the Apple Newton. But it doesn’t have to be this way.

Adoption of research is a critical success measure for Cooperative Research Centres (CRCs). One CRC in particular, the CRC for Water Sensitive Cities, has succeeded in having its research adopted by governments, companies and even the United Nations. Its secret is fruitful collaborations spanning diverse academic disciplines to deliver usable results. These are the kind of collaborations CRCs are well placed to deliver, argues Professor Rebekah Brown, project leader and former Chief Research Officer of the CRC for Water Sensitive Cities and director of the Monash Sustainability Institute.

The best are not always adopted. To change that, says Brown, developers need to know how their research solutions will be received and how to adapt them so people actually want them.

“Physical scientists, for example, benefit from understanding the political, social and economic frameworks they’re operating in, to position the science for real-world application,” she says.

The big-picture questions around knowledge and power, disadvantage and information access, political decision-making, community needs and aspirations, policy contexts and how values are economised – these are the domains of the social sciences. When social science expertise is combined with that of the physical sciences, for example, the research solutions they produce can have a huge impact. In the case of the CRC for Water Sensitive Cities, such solutions have influenced policy, strategy and regulations for the management of urban stormwater run-off, for example. Brown and her colleagues have found it takes a special set of conditions to cultivate this kind of powerful collaborative research partnership.

The CRC for Water Sensitive Cities has seen considerable growth. It started in 2005 as a $4.5 million interdisciplinary research facility with 20 Monash University researchers and PhD students from civil engineering, ecology and sociology. The facility grew over seven years to become a $120 million CRC with more than 85 organisations, including 13 research institutes and other organisations such as state governments, water utilities, local councils, education companies and sustainability consultancies. It has more than 230 researchers and PhD students, and its work has been the basis for strategy, policy, planning and technology in Australia, Singapore, China and Israel.

in text green corridor
Blue and green corridors in urban areas are part of the CRC for Water Sensitive Cities’ research into managing water as the world becomes increasingly urbanised.

In a 2015 Nature special issue, Brown and Monash University colleagues Ana Deletic and Tony Wong, project leader and CEO respectively of the CRC for Water Sensitive Cities, shared their ‘secret sauce’ on bridging the gap between the social and biophysical sciences, which allowed them to develop a partnership blueprint for implementing urban water research.


8 tips to successful collaboration

Rebekah Brown
Professor Rebekah Brown, courtesy of the Monash Sustainability Institute

Cultivating interdisciplinary dialogue and forming productive partnerships takes time and effort, skill, support and patience. Brown and her colleagues suggest the following:

1 Forge a shared mission to provide a compelling account of the collaboration’s overall goal and to maintain a sense of purpose for all the time and effort needed to make it work;

2 Ensure senior researchers are role models, contributing depth in their discipline and demonstrating the skills needed for constructive dialogue;

3 Create a leadership team composed of people from multiple disciplines;

4 Put incentives in place for interdisciplinary research such as special funding, promotion and recognition;

5 Encourage researchers to put their best ideas forward, even if unfinished, while being open to alternative perspectives;

6 Develop constructive dialogue skills by providing training and platforms for experts from diverse disciplines and industry partners to workshop an industry challenge and find solutions together;

7 Support colleagues as they move from being I-shaped to T-shaped researchers, prioritising depth early on and embracing breadth by building relationships with those from other fields;

8 Run special issues of single-discipline journals that focus on interdisciplinary research and create new interdisciplinary journals with T-shaped editors, peer-reviewers or boards.

Source: Brown, R.R, Deletic, A. and Wong, T.H.F (2015), How to catalyse collaboration, Nature, 525, pp. 315-317.


A recent Stanford University study found almost 75% of cross-functional teams within a single business fail. Magnify that with PhD research and careers deeply invested in niche areas and ask people to work with other niche areas across other organisations, and it all sounds impossible. Working against resistance to collaborate requires time and effort.

Yet as research partnerships blossom, so do business partnerships. “Businesses don’t think of science in terms of disciplines as scientists do,” says Brown. “Researchers need to be able to tackle complex problems from a range of perspectives.”

Part of the solution lies in the ‘shape’ of the researchers: more collaborative interdisciplinary researchers are known as ‘T-shaped’ because they have the necessary depth of knowledge within their field (the vertical bar of the T), as well as the breadth (the horizontal bar) to look beyond it as useful collaborators – engaging with different ways of working.

Some scholars, says Brown, tend to view their own discipline as having the answer to every problem and see other disciplines as being less valuable. In some ways that’s not surprising given the lack of exposure they may have had to other disciplines and the depth of expertise they have gained in their own.

“At the first meeting of an interdisciplinary team, they might try to take charge, for example talk but not listen to others or understand their contribution. But in subsequent meetings, they begin to see the value the other disciplines bring – which sometimes leaves them spellbound.

“It’s very productive once people reach the next stage in a partnership where they develop the skills for interdisciplinary work and there’s constructive dialogue and respect,” says Brown.

In a recent article in The Australian, CSIRO chief executive and laser physicist Dr Larry Marshall describes Australians as great inventors but he emphasises that innovation is a team sport and we need to do better at collaboration. He points out that Australia has the lowest research collaboration rates in the Organization for Economic Cooperation and Development (OECD), and attributes this fact to two things – insufficient collaboration with business and scientists competing against each other.

“Overall, our innovation dilemma – fed by our lack of collaboration – is a critical national challenge, and we must do better,” he says.

Brown agrees, saying sustainability challenges like those addressed by the CRC for Water Sensitive Cities are “grand and global challenges”.

“They’re the kind of ‘wicked problem’ that no single agency or discipline, on its own, could possibly hope to resolve.”

The answer, it seems, is interdisciplinary.


Moving forward

Alison Mitchell
Alison Mitchell, courtesy of Vitae

There’s a wealth of great advice that CRCs can tap into. For example the Antarctic Climate & Ecosystems CRC approached statistical consultant Dr Nick Fisher at ValueMetrics Australia, an R&D consultancy specialising in performance management, to find the main drivers of the CRC’s value as perceived by its research partners, so the CRC could learn what was working well and what needed to change.

Fisher says this kind of analysis can benefit CRCs at their formation, and can be used for monitoring and in the wind-up phase for final evaluation.

When it comes to creating world-class researchers who are T-shaped and prepped for research partnerships, Alison Mitchell, a director of Vitae, a UK-based international program dedicated to professional and career development for researchers, is an expert. She describes the Vitae Researcher Development Framework (RDF), which is a structured model with four domains covering the knowledge, behaviour and attributes of researchers, as a significant approach that’s making a difference to research careers worldwide.

The RDF framework uses four ‘lenses’ – knowledge exchange, innovation, intrapreneurship [the act of behaving like an entrepreneur while working with a large organisation] and entrepreneurship – to focus on developing competencies that are part and parcel of a next generation research career. These include skills for working with academic research partners and industry.


– Carrie Bengston

watersensitivecities.org.au

www.acecrc.org.au