Tag Archives: research commercialisation

CSIRO innovation fund

CSIRO Innovation Fund kicks off

Companies developing new ways to diagnose cancer, platforms to connect work and learning, next generation WiFi chips and quantum computing firmware are among the first to receive investment from Main Sequence Ventures, manager of the $200 million CSIRO Innovation Fund.

Acting Minister for Industry, Innovation and Science, Senator the Hon Michaelia Cash, says the launch of Main Sequence Ventures is an important step to ensure we can further harness Australian innovation to create new enterprises and the jobs of tomorrow.

“As part of the Turnbull Government’s National Innovation and Science Agenda, the CSIRO Innovation Fund is designed to ensure our world-class research can be turned into the jobs and economic growth of the future,” says Minister Cash.

Main Sequence Ventures will support new spin-out and start-up companies, and SMEs engaged in the translation of research generated in the Australian publicly funded research sector.

Main Sequence Ventures’ first investments in Q-Ctrl, Intersective, Morse Micro and Maxwell MRI are expected to create more than 60 new jobs.

CSIRO Chief Executive Larry Marshall says Australia has never been short of great ideas, but the value is rarely captured domestically. Australia’s scientists are world leaders, but investing in science driven innovation is hard – it needs the horsepower of Australia’s national science agency behind it.

“Science can drive change across the economy despite global disruption, improve our nation’s health and sustainability and make business globally competitive.

“This is a team Australia effort, with the Fund investing in the best ideas across the research community. This will help Australia better capture the value of science, deliver impact and drive the jobs and industries of the future,” says Dr Marshall.

Main Sequence Ventures is led by veteran venture capitalist Bill Bartee along with a team of venture capitalists and entrepreneurs with extensive experience in science and technology.

“Our first investments are giving us a great start in backing ambitious entrepreneurs to build important and growing companies,” says Mr Bartee.

“Q-Ctrl has the potential to provide the firmware framework for quantum computers, Morse Micro is building the next generation of WiFi chip, Intersective is using data science to better equip our workers for the future and Maxwell MRI is changing the way we detect and diagnose prostate cancer. 

“This is some of the best and most exciting research from the Australian innovation sector, and we look forward to working with them to realise their potential in the commercial market.

“We at Main Sequence Ventures know that this is only the beginning, and many more high-potential companies will be able to grow from our investments. We look forward to working with Australia’s deep tech founders to build epic companies.”

This information on the CSIRO Innovation Fund was first shared by CSIRO on 30 October 2017. 

Recommended for you: Australian research funding infographic

research commercialisation awards

Research commercialisation awards

Featured image above: Dr Alastair Hick, KCA Chair and Jasmine Vreugdenburg (UniSA), winner of the Best Entrepreneurial Support Initiative and People’s Choice Award at KCA’s Research Commercialisation Awards. Credit: KCA

The University of New South Wales (UNSW), Curtin University (WA) and the University of South Australia (UniSA) were winners at the Knowledge Commercialisation Australasia (KCA) Research Commercialisation Awards, announced at its annual conference dinner in Brisbane.

Success lay with UNSW which won Best Commercial Deal for securing $20 million capital investment from Zhejian Handian Graphene Tech; Curtin University for the Best Creative Engagement Strategy with The Cisco Internet of Everything Innovation Centre; and UniSA won Best Entrepreneurial Initiative and the People’s Choice Award for its Venture Catalyst which supports student led start-ups.

“These awards recognise research organisations’ success in creatively transferring knowledge and research outcomes into the broader community.  They also help raise the profile of research organisations’ contribution to the development of new products and services which benefit wider society and have the potential that develop the companies that may grow new knowledge based industries in Australia,” says KCA Executive Officer, Melissa Geue.

KCA Chairman and Director of Monash innovation at Monash University, Dr Alastair Hick, says it is important that commercialising research successes are celebrated and made public.

“KCA member organisations work incredibly hard at developing new ways to get technology and innovation out into industry being developed into the products and services of tomorrow. These awards recognise that hard work and also that we must develop new ways of improving the interface between public sector research and industry.

“I am also excited that KCA members are playing an increasing role in helping the entrepreneurs of tomorrow. It is essential that we help develop their entrepreneurial skills and give them the opportunities in an environment where they can learn from skilled and experienced mentors,” says Hick.

Research Commercialisation Awards – winning initiatives

Best Commercial Deal

Zhejian Hangdian Graphene Tech Co (ZHGT) – University of New South Wales (UNSW)

This is an initiative to fund and conduct research on cutting-edge higher efficiency voltage power cables, known as graphene, and on super-capacitors. With $20M capital investment by the Chinese corporation Hangzhou Cable Co., Ltd (HCCL), and UNSW contributing intellectual property as a 20% partner, the objectives are to execute the deal through research and development; manufacturing of research outcomes in Hangzhou; and finally commercialisation.                                                                                                             

Best Creative Engagement Strategy

Cisco Internet of Everything Innovation Centre – Curtin University

The Cisco Internet of Everything Innovation Centre, co-founded by Cisco, Curtin University and Woodside Energy Ltd, is a new industry and research collaboration centre designed to foster co-innovation. With a foundation in radioastronomy, supercomputing and software expertise, it is growing a state-of-the-art connected community focused on leveraging data analytics, cybersecurity and digital transformation network platforms to solve industry problems. The Centre combines start-ups, small–medium enterprises, industry experts, developers and researchers in a collaborative open environment to encourage experimentation, innovation and development through brainstorming, workshops, proof-of-concept and rapid prototyping. By accelerating innovation in next-generation technologies, it aims to help Australian businesses thrive in this age of digital disruption.

Best Entrepreneurial Initiative

Venture Catalyst Program – UniSA

Venture Catalyst supports student led start-ups by providing up to $50k to the new enterprise as a grant. The scheme targets current and recent graduates who have a high tolerance for risk and an idea for a new business venture that is both novel and scalable. The scheme takes an ‘IP and equity free’ approach and encourages students to collaborate with different disciplines and externals to encourage a diverse skill set for the benefit of the new venture. Venture Catalyst is a collaboration between the UniSA and the South Australian Government, and is supported through UniSA Ventures as well as representatives from industry and experienced entrepreneurs.

This year’s Research Commercialisation Awards were judged by commercial leaders of innovation:  Erol Harvey, CEO, MiniFab, Dan Grant, PVC Industry Engagement, LaTrobe University and Anna Rooke, CEO, QUT Creative Enterprise Australia.

About Knowledge Commercialisation Australasia (KCA)

Knowledge Commercialisation Australasia (KCA) is the peak body leading best practice in industry engagement, commercialisation and entrepreneurship for research organisations. They achieve this through delivery of stakeholder connections, professional development and advocacy.

This information was first shared by Knowledge Commercialisation Australasia on 2 September 2016. See all finalists here

commercialisation

Is commercialisation the dark side?

As an avid Star Wars fan I’d like to explore the topic of research commercialisation using terms that a Jedi Knight would recognise.

The Federal Government is seeking a better return on its sizeable investment in research through:

  • better commercialisation of research
  • more engagement between researchers and industry, and
  • changing the requirements for funding for research institutions and the incentives for researchers.

To some, this push for a more commercial and applied approach to research is like the Emperor urging Luke Skywalker to embrace the dark side of the force.

Like a Jedi apprentice, I began my science degree because of my love of science and desire to make a difference. I was not interested in doing a business degree or any degree that would purely maximise my salary prospects.

I chose an honours project close to my heart, involving ‘cis-platinum’ chemotherapy for breast cancer, with which my aunt had been recently diagnosed. Unfortunately the project was given to a student who was less passionate about it, but had a higher grade point average than me.

I was forced to find an alternative project. Seeking something with a practical application, I changed universities and chose a project sponsored by a company seeking a solution to a problem. My honours thesis titled ‘The wettability of rough surfaces’ looked at why roughening a surface could make it more hydrophobic for practical applications in non-stick surfaces.

When I started work at ANSTO, in a role that was half research and half business development, I was tasked with creating a spin-off business involving one of the research instruments.

As I was introduced to other research staff, a term came up that I was familiar with, but not in a work context. Some researchers referred to me as having moved to the “dark side”.  This was said as a joke, but it stemmed from an underlying belief that anyone associated with commercialisation, or engaging with industry regularly, was doing something wrong.

The implication was that there was something suspect about me for being involved in this type of activity, ‘tainted’ by commerce.

Being older and – I’d like to think – somewhat wiser, I now reflect that, had I continued along the pathway of medical research into breast cancer, perhaps I would have made an amazing discovery that could have saved many lives. But for my research to result in a cure would require the involvement of commercialisation experts – the kind of person I have become.

Between a cancer research discovery and a cured patient lies the long and arduous process of commercialisation which requires a team-based approach, where research and commercial staff work collaboratively.

I know now that being responsible for industry engagement, or commercialisation of a project rather than the research, does not mean my work is any less important, pure or noble. I’m using my strongest skills in the best way to have a positive impact for humanity, in my own way.

Commercialisation experts are not the Sith, we bring balance to the force by forging new Australian industries and actively training young researchers in the ways of industry, for research alone cannot achieve a better future.

I believe commercialisation is not the Dark Side, it is A New Hope.

– Natalie Chapman, Managing Director, gemaker

commercialisation

Natalie Chapman is a commercialisation and marketing expert with more than 15 years of experience turning innovative ideas and technologies into thriving businesses.

She co-founded her company gemaker in 2011 after almost a decade leading business development and marketing projects at ANSTO and, in 2013, won a Stevie Award for Female Entrepreneur of the Year in Asia, Australia and New Zealand.

Natalie specialises in mining, new materials, environmental and ICT technologies. She takes technologies from research through to start-up, assisting her clients with commercialisation strategy, building licensing revenue, securing funding grants, tenders and engaging with industry.

Natalie also heads corporate communications at ASX-listed mining and exploration company Alkane Resources and is responsible for attracting investment, government relations and marketing communications.

Natalie has a Bachelor of Science with honours (Chemistry) from the University of New South Wales and a Master of Business Administration (Marketing) from the University of Wollongong.

research commercialisation

Research commercialisation is push and pull

‘It’s not me, it’s you’, is the message from universities to industry in terms of success in partnering and commercialisation of research and development.

Dr Leanna Read, Chief Scientist of South Australia and the founder and former CEO of TGR BioSciences, says universities are unfairly “bagged” for not pulling their weight in collaborating with industry and in fostering the development of research commercialisation partnerships.

“Our surveys have shown there is a strong interest in commercialisation and a willingness [in university research] to engage with industry,” she told the Australian Financial Review’s Innovation Summit in Sydney today.

“One of the issues is the nature of our industry sector. We are dominated by small to medium enterprises and we tend to be low in the level of innovation happening at this level. We have a problem here where research has all the will in the world to knock on doors of industry – the trouble is they’re not going to get a terribly good reception,” she says.

“We need to grow an innovative culture in these companies.”

TGR BioSciences focuses on drug discovery assay technologies and applies its core skills in cell biology to the development of new biodetection technologies.

Universities willing to engage

Emeritus Professor Jim Piper AM, President of Science and Technology Australia, and previously from Macquarie University, says there is a “high awareness” in universities to “encourage commercialisation”.

“There are impediments, however.

“One of the issues is the silo-isation of research which has been aided and abetted by the funding mechanism of universities.”

Many people forget that the university system is a service industry driven by international reputation, Piper points out. International students choose universities based on their impact factor and international reputation, and Australian universities rely heavily on liquidity from international students.

Shifting to a focus towards research commercialisation-based funding, or key performance indicators based on partnership success, the so-called ‘partner or perish’ is a massive shift in this context, he says – but one that universities are willing to make.

“One thing you can say about university researchers is they really chase the money. If that is in collaboration, then that is where they will chase it.

“One of the issues with unis is that, in most cases, commercialisation officers don’t have critical mass and there are challenges.”

For example, there are challenges in sharing and applying intellectual property (IP), he says.

“At Macquarie University, students at the start are invited to assign their intellectual property rights to the university so the uni can negotiate on their part. Often [in other universities] students keep their IP and this can be very complicated,” he told the summit.

Practice makes perfect

The problem may lie in experience in negotiations, says Professor Ian Frazer AC, Chair of the Medical Research Future Fund and inventor of the cervical cancer vaccine.

“We probably aren’t experienced enough at this negotiation [between academia and industry],” says Frazer. “There are excellent examples of industry-uni partnerships working, but there needs to be a lot of talk to make this happen.

“We’ve got to change both sides of the equation, for industries and universities. For example, the health sector relies on unis to provide input to research. We need to ensure that there is engagement between health researchers and industry, but industry needs to realise that research is critical to what it does,” he says.

Dr Steve Jones, global head of research and development at Australian R&D spin off cancer company Sirtex – a medical device company providing a radioactive treatment for inoperable liver cancer – agrees that universities have “had a rough ride” to make dramatic changes to the way they incentivise research to promote collaboration and research commercialisation.

Sirtex has approached universities to work on research but found that it worked best when they had an identifiable problem to take to the researchers, he told Science Meets Business.

Unis have work to do too

Read acknowledges that universities also have work to do, with funding for projects traditionally focussed on research project grants rather than looking to the issues faced by customers, the business approach controversially emphasised by CSIRO CEO Dr Larry Marshall, who also spoke at the summit.

“We need more of a ‘what is the problem and how do I solve it’ approach – this is what Cooperative Research Centres do well and we need more of that kind of research,” says Read.

More pull less push towards research commercialisation

Chief Defence Scientist Dr Alex Zelinksy says any successful negotiation “needs to be win-win” for both university and industry.

“There is a push and a pull element. There is a pioneering spirit (do it yourself) rather than an entrepreneurial spirit in terms of business and commercialisation of research. We need everyone to come together.”

He agrees that one of the barrier is around intellectual property. “Access to IP needs to be on fair and commercial terms.”

– Heather Catchpole

Read more: Collaborate or Crumble

research startups

Research startups accelerate CSIRO science

Featured image above: Research startups pitch at the ON Accelerate demo night. Hovermap have developed intelligent software that will allow drones to map indoor environments.

There are now over 30 accelerator and incubator programs in Australia, but CSIRO’s ON accelerator is the only one focused on equipping research startups with the tools they need to grow.

“It’s the first time a program of this sort has been offered for the research community on this scale,” says Elizabeth Eastland, the General Manager for Strategy, Market Vision and Innovation at CSIRO.

Just six months ago, Eastland was the Director of the University of Wollongong’s iAccelerate program, but moved to CSIRO having been “blown away by what this program can offer researchers”.

At the ON Accelerate Demo event held on Thursday 7 July, Eastland introduced 11 research startups who pitched their products to Sydney’s venture capital investors. In contrast to the young faces that dominate many of Australia’s accelerators, last night’s ON cohort were led by experienced researchers, engineers, developers and entrepreneurs.

Two of the research startups revealed big plans for the agriculture industry. A group called Future Feed is selling seaweed supplements that aim to reduce livestock greenhouse gas emissions by 80%. Another team has created wireless trapping technology to help farmers detect fruit fly infestations.

Fruit Fly costs farmers US$30 billion in fruit and vegetable production around the world, but this isn’t the only global challenge that the ON research startups have been tackling. The presenter from Modular Photonics pointed out last night that the world’s internet demand is about to outstrip its fibre capacity.

His group is commercialising new photonics hardware compatible with both old internet fibre and the new fibre being developed by the top telecommunications providers.

On the health front, another of the research startups, ePAT unveiled new facial recognition software to detect pain levels in people who cannot speak, such as children and elderly people with moderate to severe dementia. Their vision is that “no patient who cannot speak will suffer in silence in pain”.

ON Accelerate had major success earlier this year when a German company launched a gluten free beer brewed from barley commercialised by a startup from last year’s ON cohort. That startup, known as Kebari, is in now the process of developing another form of gluten free grain for use in food.

Kebari co-founder and scientist Dr Phil Larkin spoke at yesterday’s research startups event, saying ON Accelerate had taught him about ‘flearning’ – learning from failure – and the importance of interrogating the entire delivery chain to validate the value of a solution.

CSIRO Principal Research Scientist and RapidAIM team leader Dr Nancy Shellhorn said that the program had given her much faster access to the market and much better insight into customer needs.

“It’s given me and the RapidAIM team a runway to the science of the future that will be truly impactful,” said Shellhorn.

Program Mentor Martin Duursma also spoke at the research startups event, saying that startup skills are very transferable to research teams because they are all about trying something, gathering feedback, making improvements and repeating the process.

“Startup skills are really just a variant of the scientific method,” said Duursma.

And scientists will have greater access to the ON research startups program next year, with a dramatic increase in the interest of universities. Eastland says that 21 of Australia’s 40 universities have now signed on to be ON partners. Macquarie University and Curtin University led the pack with their involvement this year. UNSW Australia, the University of Technology Sydney and Monash University are among those jumping on board for the next round.

– Elise Roberts


ON Accelerate Research Startups

The below information was first shared by CSIRO. Read the original list and team members here.

1. Hovermap

The future of asset inspection.

“Every year, Australia loses billions of dollars due to infrastructure failures, spends billions of dollars on inspecting its aging assets and loses some of its bravest men and women who take the risk to do this dull and dangerous job. Utility companies and governments are turning to Unmanned Aerial Vehicles (UAVs) to reduce costs and improve safety. However, current UAVs are ‘dumb and blind’ so require expert pilots and can’t fly in many places.

Our solution is an intelligent UAV with advanced collision avoidance, non-GPS flight and accurate 3D mapping capabilities – all tailored to suit industrial inspection requirements. Hovermap is the ultimate inspection tool of the future that can be used to safely and efficiently inspect hard-to-reach assets and collect extremely high fidelity data in previously unreachable places. It is suitable for inspecting telecommunication towers, bridges, power line assets and smoke stacks. This innovative technology will reduce risks, improve safety and efficiency and lower costs, all of which benefit customers and businesses.”

2. Suricle

Changing the face of polymers.

“We change the face of polymers by embedding functional particles into the surface to give them new and useful properties. Our patented technology paves the way for development of many new, innovative materials and products.

An immediate area of application is to protect high-value marine sensors from biofouling. The unwanted growth of marine organisms causes signal attenuation, sensor malfunction, increased weight and unwanted drag due to ocean currents. There are many thousands of marine sensors deployed globally, costing up to $120K each, which require frequent cleaning to keep them in service.

Suricle are focusing on treating adhesive polymer films with antifouling properties for attachment to sensors to mitigate biofouling. Kits containing this film will be sold via our e-commerce store for application in the field by the end-users, offering savings of thousands of dollars per year in reduced maintenance costs.”

3. RapidAIM

Supporting and growing global fruit and vegetable export markets

“Fruit Fly are the number one biosecurity issue in fruit and vegetable production. Globally US$30b worth of fruit and vegetable production is lost due to fruit fly, and $US18b in global trade is threatened by the pest.

Millions of fruit fly traps across the globe are checked manually, causing delay and risking outbreaks. This can close markets!

RapidAIM is a new era in biosecurity. We provide a service of real-time alerts for the presence and location of fruit fly using wireless trapping technology. This immediate data-driven decision service allows biosecurity agencies, growers and agronomists to respond rapidly to fruit fly detection to control the pest.

This allows for targeted workflow, the protection of existing markets and supports the development of new trading opportunities.”

4. ExByte

Predictive data analytics for preventative maintenance of infrastructure assets including water 

“Each year 7,000 critical water main breaks occur in Australia resulting in billions of dollars in rectification and consequence cost. In contrast, the cost of preventative maintenance is only 10 per cent of the reactive repair cost. The ExByte team has developed a disruptive technology that uses data analytic techniques to predict failure probability based on learned patterns, offering a solution to accurately predict water pipe failures resulting in effective preventative maintenance and a reduction in customer interruptions.”

5. Future Feed

A natural feed additive from seaweed that dramatically reduces livestock methane and increases production.

“The world is under increasing pressure to produce more food and producing more food is contributing to climate change. Livestock feed supplementation with FutureFeed is the solution. It can improve farm profitability and tackles climate change. FutureFeed can also provide farmers access to other income streams through carbon markets and provide access to premium niche markets through a low carbon footprint and environmentally friendly product.”

6. elumin8

An energy efficiency product that empowers households to understand and reduce their energy consumption.

“It is very difficult for households to improve their energy efficiency and transition to a sustainable future as current solutions are boring, costly and confusing. Elumin8 solves this problem by providing tailored energy information via a unique communication channel, allowing homeowners to directly engage with their home in a human and personable way as though it was another member of the family. Elumin8 also guides the household step by step along the journey to energy independence by improving energy efficiency and taking the risk and confusion out of installing solar and batteries.

We do this by collecting electricity data from a single sensor and use unique algorithms to disaggregate the data and determine appliance level consumption. Social media applications and advanced analytics are then utilised to connect the homeowner with their home allowing instant and humanised communication to ensure they are engaged with their energy use.”

7. Coviu

An online face-to-face business transaction platform.

“The way we work is changing. We need tools to enable those changes.

Traditional video conferencing tools are clunky and do not support experts like coaches, clinicians or lawyers in delivering and charging for their professional services online.

Coviu is the solution. Professionals get a frictionless and easy-to-use solution for setting up online consulting rooms and invite clients to rich interactive consults. One click and your client is talking to you in their browser – no software installations, no complicated call setup.

Coviu is a groundbreaking new video and data conferencing technology that works peer-to-peer allowing for massive scalability, speed and affordability.”

8. Reflexivity

A process that helps mining companies proactively manage community sentiment before conflict occurs.

“When resources companies lose the trust of the communities they work alongside, conflict occurs. Projects take twice as long to develop as they did a decade ago and cost 30 per cent more than they should because of social conflict. Companies don’t have the tools to systematically understand what their communities think about them, and communities have few constructive ways to feel heard.

Reflexivity has solved this problem by providing our customers with a sophisticated data analytic engine that translates community survey data we collect into prioritised opportunities for trust building and risk mitigation strategies. Our analytics identify those factors that build and degrade trust in a company, in the minds of community members; our customers are then able to invest resources and energy into the issues that matter most. Using mobile technology, our data streams to our customers in real time via a subscription model.

We have engaged over 14,000 community members in eight countries, and generated $1.5m in revenue in the last three years. And while we started in mining, our process is valuable wherever these relationships are important. We are building a service delivery platform to scale up our process and we are seeking support and advice to turn our successful global research program into a successful global business.”

9. Meals by Design

Healthy convenience never tasted so good!

“Ready-to-eat convenience doesn’t have to result in dissatisfaction and guilt. By bringing together the latest innovations in food manufacturing, including High Pressure Thermal processing, and an understanding of the nutritional needs of a diverse population, cuisine favourites can be prepared in a convenient format without compromising eating satisfaction or, importantly, nutrition.

Meals by Design develops premium and customisable meal solutions that cater to nutritional and functional needs, offering healthy convenience without compromise.”

10. ePAT

Real-time pain assessment through facial recognition technology for patients that cannot verbally communicate.

“Imagine you are in excruciating pain, but you can’t tell anyone. This is the reality for millions of non-communicative people world-wide, such as those with moderate to severe dementia. ePAT’s point of care apps utilise facial recognition technology to detect facial micro-expressions which are indicative of pain, to provide these people with a voice.”

11. Modular Photonics: big fast data

Passive fibre-optic technology that significantly increases data transmission capacity.

“Modular Photonics uses a novel integrated photonic chip to enhance the data rate across existing multimode fibre links by 10x and more. The technology enables multiple data channels in parallel without the length restrictions imposed by conventional multimode fibre links.”