Tag Archives: Murdoch Childrens Research Institute

eureka prize 2016

Eureka Prize Winners of 2016

Featured image above: Winners of the 2016 UNSW Eureka Prize for Scientific Research, Melissa Little and Minoru Takasato from the Murdoch Childrens Research Institute. Credit: Australian Museum

Regenerating kidneys, smart plastics, artificial memory cells and a citizen science network that tracks falling meteors. These and many other pioneering scientific endeavours have been recognised in the 2016 annual Australian Museum Eureka Prizes, awarded at a gala dinner in Sydney.

Having trouble with a kidney? It may not be long before you can simply grow a new one. This is the ultimate ambition behind the research of the 2016 UNSW Eureka Prize for Scientific Research winners, which was awarded to Melissa Little and Minoru Takasato from the Murdoch Childrens Research Institute.

They have developed a method of growing kidney tissue from stem cells, and their kidney “organoids” develop all the different types of cells that are needed for kidney function. The kidney tissue is currently used in the lab to model kidney disease and to test new drugs, but one day the technique could be developed to regrow replacement kidneys for transplant.

For his work using the latest in 3D printing and materials technology develop a world centre for electromaterials science, Gordon Wallace, from the University of Wollongong, received the 2016 CSIRO Eureka Prize for Leadership in Innovation and Science.

Some of the materials he and his team are developing include structures that are biocompatible, meaning they can be used inside the body without causing an adverse reaction. These structures can be used to promote muscle and nerve cell growth. Other cells include artificial muscles using carbon nanotubes.

The CSIRO’s Lisa Harvey-Smith has been one of the most vocal and energetic proponents of science in the media and the general public, especially amongst Indigenous communities. It is for her work as the face of the Australian Square Kilometre Array Pathfinder (ASKAP) and communicating astronomy to the public that Harvey-Smith was awarded the 2016 Department of Industry, Innovation and Science Eureka Prize for Promoting Understanding of Australian Science.

Have you ever seen a meteor streak across the sky and wondered where it landed? Phil Bland, from Curtin University, certainly hopes you have. He and his team set up the Desert Fireball Network, which allows members of the public to track meteors as they fall, helping them to identify where they land, and where they came from.

For this, Bland and his team were awarded the 2016 Department of Industry, Innovation and Science Eureka Prize for Innovation in Citizen Science.

But not all the awards went to seasoned researchers. Some were reserved for the next generation of scientific pioneers.

Hayden Ingle, a Grade 6 student from Banksmeadow Primary School in Botany, received the 2016 Sleek Geeks Science Eureka Prize for Primary Schools for his video production, The Bluebottle and the Glaucus. It tells the remarkable tale of a little known sea predator, the tiny sea lizard, or glacus atlantica, and its fascinating relationship with the bluebottle.

Speaking of predators, a video by Claire Galvin and Anna Hardy, Year 10 students at St Monica’s College, Cairns, won the 2016 Sleek Geeks Science Eureka Prize for Secondary Schools for exploring the eating habits of the Barn Owl.

They examined “owl pellets”, which contain the indigestible components of the owl’s last meal, and used them to identify its prey.

Other winners of the 2016 Eureka Prize

Ewa Goldys from Macquarie University and the ARC Centre of Excellence for Nanoscale BioPhotonics and Martin Gosnell from Quantitative Pty Ltd have been awarded the ANSTO Eureka Prize for Innovative Use of Technology for their development of hyperspectral imaging technology, which enables the colour of cells and tissues to be used as a non-invasive medical diagnostic tool.

For his discovery and development of novel treatments for serious brain disorders, Michael Bowen, from the University of Sydney, is the winner of the Macquarie University Eureka prize for Outstanding Early Career Researcher. His research has established oxytocin and novel molecules that target the brain’s oxytocin system as prime candidates to fill the void left by the lack of effective treatments for alcohol-use disorders and social disorders.

For developing a new generation of armoured vehicles to keep Australian soldiers safe in war zones, Thales Australia and Mark Brennan have won the 2016 Defence Science and Technology Eureka Prize for Outstanding Science in Safeguarding Australia.

Davidson Patricia Davidson is Dean of the Johns Hopkins University School of Nursing in Maryland, and has mentored more than 35 doctoral and postdoctoral researchers, working tirelessly and with passion to build the capacity of early career researchers, an achievement that has won her the 2016 University of Technology Sydney Eureka Prize for Outstanding Mentor of Young Researchers.

For taking basic Australian research discoveries and developing them into a new cancer therapy that was approved by the US Food and Drug Administration in April this year, David Huang and his team from the Walter and Eliza Hall Institute of Medical Research has win the 2016 Johnson & Johnson Eureka Prize for Innovation in Medical Research. The drug, venetoclax, was approved for a high-risk sub-group of patients with Chronic Lymphocytic Leukemia and is now marketed in the US.

For creating a three part documentary that portrayed both the good and the evil of uranium in a series seen around the world, Twisting the Dragon’s Tail, Sonya Pemberton, Wain Fimeri and Derek Muller, won the 2016 Department of Industry, Innovation and Science Eureka Prize for Science Journalism.

Sharath Sriram, Deputy Director of the A$30 million Micro Nano Research Facility at RMIT University, has won the 2016 3M Eureka Prize for Emerging Leader in Science for his extraordinary career – during which he and his team have developed the world’s first artificial memory cell that mimics the way the brain stores long term memory.

For bringing together a team with skills ranging from mathematical modelling to cell biology and biochemistry, Leann Tilley and her team from the University of Melbourne have won the 2016 Australian Infectious Diseases Research Centre Eureka Prize for Infectious Disease Research. They have uncovered an important life saving mechanism by which the malaria parasite has developed resistance to what has been previously a widely used and successful malarial treatment.

For recruiting an international team of scientists to measure trace elements in the oceans from 3.5 billion years ago to the present day to understand the events that led to the evolution of life and extinction of life in the oceans, Ross Large from the University of Tasmania and researchers from as far as Russia and the US have won the 2016 Eureka Prize for Excellence in Interdisciplinary Research.

For conducting the world’s first survey of plastic pollutants which has given us a confronting snapshot of the impacts on marine wildlife of the 8.4 million tones of plastic that enters the oceans each year, Denise Hardesty, Chris Wilcox, Tonya Van Der Velde, TJ Lawson, Matt Landell and David Milton from CSIRO in Tasmania and Queensland have won the 2016 NSW Office of Environment and Heritage Eureka Prize for Environmental Research.

The Functional Annotation of the Mammalian Genome (FANTOM5) project produced a map that is being used to interpret genetic diseases and to engineer new cells for therapeutic use. The team led by Alistair Forrest from the Harry Perkins Institute of Medical Research has won the 2016 Scopus Eureka Excellence in International Scientific Collaboration Prize.

– Tim Dean

This article on the Eureka Prize 2016 winners was first published by The Conversation on 31 August 2016. Read the original article here.

gender

How to balance gender in STEM

Sobering statistics on gender disparity were released by the Office of the Chief Scientist in early 2016 as part of a report on STEM-based employment. These followed the federal government’s National Innovation and Science Agenda (NISA) announcement of a $13 million investment to encourage women to choose and stick with STEM careers. So, what are the issues for men and women entering STEM graduate pathways today and how can you change the game?

The rate of increase in female STEM-qualified graduates is outstripping that of males by 6 per cent. Overall, however, women make up just 16% of STEM-qualified people, according to the Chief Scientist’s March 2016 report, Australia’s STEM Workforce.

Recognising that more needs to be done, a cohort of exceptional female and male leaders in academia and industry is developing two strategic approaches that will receive the bulk of the new NISA funding. These are the industry-led Male Champions of Change initiative, and the Science in Australia Gender Equity (SAGE) pilot, run the Australian Academy of Science and the Australian Academy of Technological Sciences and Engineering.

SAGE was founded by Professors Nalini Joshi and Brian Schmidt (a Nobel laureate) with a view to creating an Australian pilot of UK program the Athena SWAN Charter. Established in 2005, Athena SWAN was described by the British House of Commons as the “most comprehensive and practical scheme to improve academics’ careers by addressing gender inequity”.

Since September 2015, 32 organisations have signed up for Australia’s SAGE pilot, which takes a data analysis approach to affect change. Organisations gather information such as the number of women and men hired, trained and promoted across various employment categories. They then analyse these figures to uncover any underlying gender inequality issues, explains Dr Susan Pond, a SAGE program leader and adjunct professor in engineering and information technologies at the University of Sydney. Finally, participating organisations develop a sustainable four-year action plan to resolve the diversity issues that emerge from the analyses.

Women occupy fewer than one in five senior researcher positions in Australian universities and institutes, and there are almost three times as many male than female STEM graduates in the highest income bracket ($104K and above). The Australia’s STEM Workforce report found this wealth gap is not accounted for by the percentage of women with children, or by the higher proportion of females working part-time.

There are, however, some opportunities revealed by the report. While only 13% of engineering graduates are female, 35% of employees with engineering degrees are female, so a larger proportion of women engineers are finding jobs. Across all sectors, however, employment prospects for STEM-qualified women are worse than for non-STEM qualified women – a situation that’s reversed for men.

Part of the problem is that graduates view academic careers as the only outcome of a STEM degree – they aren’t being exposed to careers in industry and the corporate sector, says Dr Marguerite Evans-Galea, a senior research leader at the Murdoch Childrens Research Institute and co-founder of Women in Science Australia.

“There are so many compounding issues in the academic environment: it’s hypercompetitive, you have to be an elite athlete throughout your entire career,” she says. “This impacts women more because they are often the primary caregivers.”

An increased focus on diversity in STEM skills taught at schools, however, is changing the way women relate to careers in the field, Marguerite says.

“There are opportunities for women because, with diversified training, we can realise there is a broad spectrum of careers. A PhD is an opportunity to hone your skills towards these careers.”

In the workforce, more flexible work arrangements and greater technical connectivity are improving conditions for women at the early-career level but, as Marguerite points out, there is still a bottleneck at the top.

“I’m still justifying my career breaks to this day,” she says. “It’s something that travels throughout your entire career – and this needs to change.”

Part of the issue is the way we measure success, as well as gender disparity, on career and grant application review panels – and this won’t change overnight.

“How we define merit may be different if there are more women in the room,” Marguerite adds. “There will be a more diverse range of ideas. Collaborations and engagement with the public may be valued more, as well as your ability to be an advocate and be a role model to other women in STEM. Paired with essential high-quality research, it could provide a broader lens.”

-Heather Catchpole

This article was first published on Postgraduate Futures on 29 May 2016. Read the original article here.