Tag Archives: careers in engineering


Creating the life-saving Nanopatch

Featured image above: creator of the Nanopatch, Professor Mark Kendall

Professor Mark Kendall was all set for a career in aerodynamics when he met a man with an unusual idea: he wanted to use rocket technology to fire vaccines into the skin. Intrigued, Kendall accepted the man’s offer to work at Oxford University, where together with others they developed the ‘gene gun’ – a device that used aerodynamic principles to deliver vaccines to the skin.

That was almost 20 years ago. Kendall has since moved back to Australia and pushed beyond the gene gun technology, creating the Nanopatch, a new and unique way to administer life-saving vaccines that is safer and more effective than using a needle and syringe.

The Nanopatch is a tiny piece of silicon, covered on one side with up to 20,000 microscopic projections per square centimetre. Each of these projections is coated in a dry vaccine. When the patch is applied, these projections deliver the vaccine just below the top layer of the skin, which is abundant in immune cells. Within about a minute, the vaccine becomes wet in the cellular environment and is released. 

 Animal testing has shown that the Nanopatch delivers similarly protective immune responses as the needle and syringe, with significantly lower doses of vaccine. Using dry vaccines also means there is no need for refrigeration. Being needle-free, there is mitigated risk of cross-contamination or injuries. Needle-phobic people can also rejoice: the patch delivery method promises to be painless.
“The Nanopatch has the potential to completely change the way vaccines are delivered and address ongoing problems in the global push for vaccines in the developing world,” says Kendall, Group Leader of The Australian Institute for Bioengineering and Nanotechnology at The University of Queensland.

From aerodynamics to immunology 

Originally a mechanical engineer with a PhD in hypervelocity aerodynamics – “I was researching high-speed wind tunnels for interplanetary missions” – Kendall’s interest in immunology stemmed from his time at Oxford working on the gene gun.

Immunologists had discovered there were thousands of immune cells just under the surface of the skin. Instead of injecting deep into muscle where there are fewer immune cells, why not administer vaccines to the skin? There was only one problem: the technology to effectively do this did not exist – until Kendall came along.

“As an engineer with a knowledge of immunology, I looked at the scale of the cells, their spatial position and how quickly they moved,” says Kendall.

“That fresh thinking allowed me to come up with the idea of using an array of nano-projections to deliver vaccines to those cells. For the array to work, you need a base on which to attach the projections and that was the silicon patch.”

More effective vaccines that don’t need refrigeration

The Nanopatch has two major advantages over traditional vaccination methods. The first is improved immunogenicity. In 2015, Kendall’s team, in collaboration with the World Health Organization (WHO) and the US Centres for Disease Control and Prevention, tested an inactivated poliovirus vaccine on rats using the Nanopatch. They found they needed 40 times less vaccine to generate the same functional immune response as the needle and syringe.

“Many of the new-generation vaccines are expensive, multi-dose medicines that are difficult to make,” says Kendall. “The Nanopatch, when proven in humans, has tremendous potential to reduce manufacturing costs because we will need less vaccine to induce a protective immune response.”

Smaller than a postage stamp and covered in vaccine-coated microscopic projections, the Nanopatch promises to save the lives of millions of people worldwide by giving them access to safe, effective and needle-free vaccinations.

Kendall hopes the Nanopatch can become a vehicle to make vaccines work better in the developing world. 

The Nanopatch has been tested in animals on vaccines for influenza, HPV, polio, malaria, HSV-2, chikungunya, West Nile virus and pneumococcus – all diseases plaguing developing nations. 

Of the 14 million people who die of infectious diseases every year, the majority are in developing countries, where people are not able to receive effective vaccines that exist for others, or they die from diseases that still do not have adequate vaccination methods. 

“The Nanopatch could potentially help on both fronts,” says Kendall. “It can bridge that ‘last mile’ to get effective vaccines to people who aren’t receiving them, and through its improved immunogenicity, could help candidate vaccines for diseases such as malaria to get over the line and be effective.” It may also be possible for people to self-administer the vaccine.

Moreover, unlike liquid vaccines that need to be kept cold from production to application, the Nanopatch does not require refrigeration. Lab tests have shown the dry vaccine can be stored at 23 degrees Celsius for more than a year without any loss of activity – a significant benefit in regions where vaccines have to travel long distances to reach their destination and where there may be no electricity to keep them cold.

Nanopatch trials are underway

In 2011, Kendall founded Vaxxas to develop and commercialise the Nanopatch, raising A$15 million in first-round funding – one of Australia’s largest-ever investments in a startup biotechnology company. Four years later, it raised A$25 million, the proceeds of which was used to advance a series of clinical programs and develop a pipeline of new vaccine products for major diseases.

Vaxxas has also forged a partnership with American pharmaceutical company Merck to evaluate, develop and commercialise the Nanopatch for vaccine candidates. In 2014, Vaxxas was selected as a World Economic Forum Technology Pioneer based on the potential of the Nanopatch to improve health on a global scale.

The Nanopatch is currently undergoing clinical trials. The WHO will also conduct clinical tests to determine the utility of the Nanopatch for polio vaccinations. Concurrently, Vaxxas is determining if the Nanopatch can be manufactured in large numbers at low cost. All things going well, Kendall says the Nanopatch may be commercially available by 2020.

For his pioneering work, Kendall has received a raft of awards, most recently the 2016 Dr John Dixon Hughes Medal for Medical Research Innovation and the 2016 CSL Young Florey Medal, one of Australia’s highest science honours.

But Kendall will not rest until the Nanopatch is in the field. 

“Vaccines will continually be improved; there will be new vaccines coming out for diseases that don’t currently have adequate vaccination strategies and improved vaccines for the ones that do,” he says.

“I’m not going to be satisfied until we’ve rolled the Nanopatch out, taken it out of the lab and got it to people in large numbers, particularly the people who need it the most.”

Mark Kendall with the Nanopatch

Find out more about The Australian Institute for Bioengineering and Nanotechnology at the University of Queensland.

Find out more about Vaxxas.

– Charmaine Teoh

This article was first published by Australia Unlimited. Read the original article here.


How to balance gender in STEM

Sobering statistics on gender disparity were released by the Office of the Chief Scientist in early 2016 as part of a report on STEM-based employment. These followed the federal government’s National Innovation and Science Agenda (NISA) announcement of a $13 million investment to encourage women to choose and stick with STEM careers. So, what are the issues for men and women entering STEM graduate pathways today and how can you change the game?

The rate of increase in female STEM-qualified graduates is outstripping that of males by 6 per cent. Overall, however, women make up just 16% of STEM-qualified people, according to the Chief Scientist’s March 2016 report, Australia’s STEM Workforce.

Recognising that more needs to be done, a cohort of exceptional female and male leaders in academia and industry is developing two strategic approaches that will receive the bulk of the new NISA funding. These are the industry-led Male Champions of Change initiative, and the Science in Australia Gender Equity (SAGE) pilot, run the Australian Academy of Science and the Australian Academy of Technological Sciences and Engineering.

SAGE was founded by Professors Nalini Joshi and Brian Schmidt (a Nobel laureate) with a view to creating an Australian pilot of UK program the Athena SWAN Charter. Established in 2005, Athena SWAN was described by the British House of Commons as the “most comprehensive and practical scheme to improve academics’ careers by addressing gender inequity”.

Since September 2015, 32 organisations have signed up for Australia’s SAGE pilot, which takes a data analysis approach to affect change. Organisations gather information such as the number of women and men hired, trained and promoted across various employment categories. They then analyse these figures to uncover any underlying gender inequality issues, explains Dr Susan Pond, a SAGE program leader and adjunct professor in engineering and information technologies at the University of Sydney. Finally, participating organisations develop a sustainable four-year action plan to resolve the diversity issues that emerge from the analyses.

Women occupy fewer than one in five senior researcher positions in Australian universities and institutes, and there are almost three times as many male than female STEM graduates in the highest income bracket ($104K and above). The Australia’s STEM Workforce report found this wealth gap is not accounted for by the percentage of women with children, or by the higher proportion of females working part-time.

There are, however, some opportunities revealed by the report. While only 13% of engineering graduates are female, 35% of employees with engineering degrees are female, so a larger proportion of women engineers are finding jobs. Across all sectors, however, employment prospects for STEM-qualified women are worse than for non-STEM qualified women – a situation that’s reversed for men.

Part of the problem is that graduates view academic careers as the only outcome of a STEM degree – they aren’t being exposed to careers in industry and the corporate sector, says Dr Marguerite Evans-Galea, a senior research leader at the Murdoch Childrens Research Institute and co-founder of Women in Science Australia.

“There are so many compounding issues in the academic environment: it’s hypercompetitive, you have to be an elite athlete throughout your entire career,” she says. “This impacts women more because they are often the primary caregivers.”

An increased focus on diversity in STEM skills taught at schools, however, is changing the way women relate to careers in the field, Marguerite says.

“There are opportunities for women because, with diversified training, we can realise there is a broad spectrum of careers. A PhD is an opportunity to hone your skills towards these careers.”

In the workforce, more flexible work arrangements and greater technical connectivity are improving conditions for women at the early-career level but, as Marguerite points out, there is still a bottleneck at the top.

“I’m still justifying my career breaks to this day,” she says. “It’s something that travels throughout your entire career – and this needs to change.”

Part of the issue is the way we measure success, as well as gender disparity, on career and grant application review panels – and this won’t change overnight.

“How we define merit may be different if there are more women in the room,” Marguerite adds. “There will be a more diverse range of ideas. Collaborations and engagement with the public may be valued more, as well as your ability to be an advocate and be a role model to other women in STEM. Paired with essential high-quality research, it could provide a broader lens.”

-Heather Catchpole

This article was first published on Postgraduate Futures on 29 May 2016. Read the original article here.