Tag Archives: IP

AMSIIntern

Disrupting the rag trade with 3D printing

Tec.Fit founder Tim Allison is a business owner bringing cutting edge technology applications to the global fashion industry. Using an innovative scanning app that outputs 3D models and measurements, Tec.Fits allows couturiers and customers to bypass the need to be in the same room when producing customised clothing. Australia’s emerging research talent is now contributing to Tec.Fit’s success.

Tec.Fit solves problems like poorly fitted garments when purchased online. It also offers the fashion industry scalable solutions for bespoke, custom designed clothing like suits, wedding attire and uniforms.

Coming from an international consumer tech background, Allison describes his business as one of the thousands of global companies that are disrupting e-commerce and the designer fashion industries.

Allison is now working with three Australian universities to develop the technology he needs to take his business to the next level by developing next generation 3D printers that can output at scale.

Working with AMSIIntern, a Commonwealth Government funded scheme that rebates engagement with PhD candidates in industry, Allison has been able to engage three PhD students as interns. Tec.Fit is working with PhD candidates from Swinburne, RMIT and Deakin universities and is on the hunt for a fourth PhD candidate to join the Sydney team.

While he knew from the start exactly what skillsets and specific expertise he needed from researchers, it took Allison about 12 months to find the right collaborator.

“I had one professor who said to me: ‘Tim I can definitely do your project – it’s no problem at all – but I am going to need to do eighteen more months of research.’ Eighteen months is a lifetime in technology terms!” said Allison.

Other difficulties he experienced along the way included negotiating with universities on IP ownership and getting priorities aligned with academic partners.

Tec.Fit founder TIm Allison

AMSIIntern Postgraduate Program

The AMSIIntern Postgraduate Program is a unique model for innovation that seeks to connect PhD candidates at universities across Australia with emerging business opportunities. The program builds valuable partnerships between industry and academia to create more collaboration and research commercialisation.

Business Development Manager Mark Ovens says that the AMSIIntern model is all about putting bright students into industry to give them critical workplace skills that enhance their specialist STEM research skills. Ovens describes the program as a stealthy means of uncovering hidden talent that is lurking in the depths of a research school rather than actively looking for work. While there is ample opportunity available, Ovens says that academic institutions can be slow in responding to the opportunities offered by business.

“In Canada, from where this program has evolved, they are placing hundreds of PhD students into industry each year. Around 50% of students have access to industry experience as a part of their doctoral experience. “In Australia the challenge for AMSI is to increase the intern programs per year with industry partners and we need help from all Australian Universities to supply the PhD’s students.” he said.

Ovens said that the scheme needs stronger support from both academia and industry to ensure that current PhD students get the chance to develop valuable industry experience before they graduate. With all Australian universities eligible to access AMSIIntern programs, the scheme provides a unique opportunity for businesses to access research talent.

“There is no employment. Rather, industry partners provide a contract for service and AMSIIntern liases with the relevant university so that the student gets paid a stipend by them,” say Ovens.

“The program allows industry partners to trial candidates during the 3–5 months for cultural and skills fit. At the end of a project they can release students to return to their studies, or if they have completed their degree, they can give them a job.”

Ovens says that the scheme is above all a low risk strategy.

“It’s also low cost with potential high returns as industry partners keep any IP that may result, making it easier to engage with universities,” he added.

Ovens said the project experience of the postgraduate student is at the heart of the scheme.

“Coached by their academic supervisor, industry experience brings new thinking, new ideas and experimentation to bear on challenges that the student must solve – an invaluable, real-world experience that will only enhance their future careers whether in academia or industry.”

Find out more about AMSIIntern here or read some case studies.

– Jackie Randles

defence funding

New defence funding announced

Featured image above: New defence funding announced for multidisciplinary teams of researchers. Credit: Commonwealth of Australia, Department of Defence

The AUSMURI program allocates $25 million to Australian researchers to work across defence projects.

The defence program was launched on the 23 May by the Minister for Defence Industry, the Hon Christopher Pyne MP.

The program will leverage the existing US Multidisciplinary University Initiative (MURI) grant program, which is administered by the US Department of Defense, Minister Pyne said.

Speaking about the program at the Collaborate Innovate conference in Canberra today, Chief Defence Scientist Alex Zelinsky said the intellectual property (IP) of the research will be owned by universities taking part in the program.

The winning bids – which will compete against American colleges seeking funding – will be announced in March 2018.

The defence program will provide grants to support multi-disciplinary teams of Australian university researchers who collaborate with US academic colleagues on high priority projects for future Defence capabilities.

Nine priority areas for defence funding

Dr Zelinsky identified these nine areas today and also spoke about which priority areas will be the focus for Defence Cooperative Research Centres (CRCs), which will be based on the existing CRC programme, which has been running since the 1990s and has funded over 200 CRCs across multiple areas.

While CRCs are industry led research collaborations, DCRCs will operate on a ‘top down’ approach, said Zelinsky. Minister Pyne is expected to announce the first three Defence CRCs shortly.

“We believe they will be a vital element in delivering under the Next Generation Technology fund,” Zelinsky told Science Meets Business. The NGT will invest $730 million in “emerging and future technologies” to 2026.

The nine priority areas of the NGT are: space capabilities, integrated intelligence, enhanced human performance, advanced sensors, quantum technologies, multidisciplinary materials science, trusted autonomous systems, medical countermeasure products, and cyber.

“We are sponsoring R&D through the NGT fund and developing this through the Defence Innovation Hub. This requires interaction with the outside world – we’re no longer trying to do everything in house. We want to get the best minds to be applied to our problems,” said Zelinsky.

“We want the best people working on tough problems. That needs significant, deep collaboration. Defence is going to be driven by innovation.”

– Heather Catchpole

collaboration

Collaboration at a higher scale

Collaboration is a simple idea. You can teach it to a child: ask a child to share something and soon enough they will. Although they may initially react by turning away or looking down, given enough impetus they’re soon leaping around enjoying the benefits and challenges of shared play.

Scale it up to groups, organisations, industries, and academia, and it can seem complex. Industry has a commercial imperative; traditionally researchers sought more lofty goals or truths. Both universities and industry want to protect their IP. Working out the details is a legal wrangle; ensuring a shared vision when you don’t share the same location is a constant gamble.

Successful collaborations must have some form of flexibility or adaptability, yet large organisations can be slow in moving together, and in moving forward.

Technology has shifted the pace, as well as the level of expectation in terms of team collaboration. Tech companies have collaboration in their DNA, and cloud technology and automation are driving us faster towards collaborating closely – often with people we have never physically met.

Our level of trust is changing, and is threatened by a jumpy global attitude towards people who are different from us, and the prevalence in our lives of internet connected devices. Yet as the Hon Philip Dalidakis MP points out, cybersecurity is a collaboration opportunity as much as it is a shared risk.

To remain relevant, to keep pace in this shifting landscape – to compete in a global marketplace and as part of the world’s fast-moving network of research that forms the global brains trust – that will not happen unless we dramatically shift our perspective.

Technology has tethered us to the world and taken away the scourge of distance. Suddenly we’re accessible as a country in a way we have never been before.

Collaboration opens up opportunities as well as presenting challenges. It has long been happening at the level of individuals, as people from industry, research, community and government form alliances of interests. Our challenge is now to upscale. And it’s a tough one.

We may not have the same processes and infrastructure as other countries in developing the impetus to push our burden of change, Sisyphus-style, up this mountain.  But as these thought leaders demonstrate, we are taking some great strides – and are at least like the reluctant child, now looking up towards the benefits of collaboration. 

collaboration

Heather Catchpole

Head of Content, Refraction Media

Read next: Jan Janssen, Senior Vice President of Design & Development at Cochlear, takes a look at multidisciplinary collaboration that underpins the world’s most sophisticated solutions.

Spread the word: Help Australia become a collaborative nation! Share this piece on collaboration using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Digital Disruption Thought Leadership Series here.

university-industry collaboration

Blueprints to a collaboration boom

Featured image above: Robin Knight (right) and Patrick Speedie (left) are cofounders of university-industry collaboration platform IN-PART. Credit: IN-PART

Robin, you’re four years into the IN-PART journey, and you’re already connecting 70% of your university opportunities with potential partners. Can you take us back to the start, and tell us how you first came to be interested in university-industry collaboration?

Prior to setting up IN-PART I was in academic research at King’s College London. I was always interested in collaborating with industry partners, especially when working in an area with potentially translatable outputs.

While undertaking my PhD I started working on an academic-to-academic platform with a couple of colleagues, and during that time I had a conversation with my now co-founder and long-time friend, Patrick Speedie, who was working in IP management and publishing. Our shared experiences and discovery of the need to better connect the two worlds of academia and industry motivated us to form university-industry collaboration platform IN-PART.

Tell us a bit more about IN-PART and how it gained traction?

At its core, IN-PART a tool to help Tech Transfer teams (and by extension researchers) find external partners interested in their research. The translation of academic research into impactful outputs is key to the advancement of society, and we wanted to be a key part in increasing those outputs.

So we began by building a network of individuals in industry who were both capable and motivated to interact with universities about research. Then we had to figure out the best and most efficient way to showcase opportunities to them.

After piloting a minimum viable version of IN-PART with six UK universities in 2013, we managed to find 25% of provided opportunities with potential industry partners in just two months. Three years and two investment rounds later, we now provide over 70% of each university’s content with potential partners.

IN-PART is all about university-industry collaboration. Why did you choose to focus on universities in particular?

We use the broader term of universities to represent publicly-funded research. Amongst these we will also include research institutions, and notably we recently welcomed Public Health England to IN-PART. They are a very interesting case as the outputs from a government lab differ from those of a traditional research institute, owing to the more hazardous bio-projects they undertake and different potential technologies that result.

Our industry audience are often seeking to access the academic behind available IP, especially if considering a license. It’s rare that a company would be able to take a technology and have it fit directly into their research pipeline – expertise is required for guiding that fit and this makes universities and research institutions such an attractive resource.

An important element of what we do is making sure all the content we have is ‘available’. This means we do not ‘scrape’ websites for technology nor trawl the internet, which turns up expired patents and technology where the academic is no longer associated. Instead we keep in close communication with university teams to make sure everything we have is relevant and up to date.

We do not work with company or industry generated IP seeking licensees. We also never want to be in the industry of trading IP for the sake of litigation, which from my personal point of view seems to counter our progression as a species.

I’ve noticed that at IN-PART, you restrict your platform to particular industry professionals. Have you found this to be important to the success of your collaboration model?

Yes, very important. When we first piloted IN-PART in the UK under a beta-test with six universities, it was clear that we wanted to only provide introductions to end-users in industry. By restricting our audience in this manner it meant that every contact we passed along was meaningful and high-value. What we didn’t want to do was pass on opportunities to work with consultants. That being said, consultants provide a valuable component within the ecosystem and we’re currently exploring how they can be included within our community.

To hear more from Dr Robin Knight about the key drivers behind successful commercialisation and collaboration, click here.

profile_inpartrobin

Dr Robin Knight is Co-founder and Director of UK-based university-industry collaboration platform IN-PART.

Click here to find out more about opportunities with IN-PART. To find more industry-ready technology from Australian universities, visit Source IP.

global collaboration

Global collaboration and emerging trends

Featured image above: global collaboration. Credit Eric Fischer, Flickr

Robin, having been in this space for several years, can you tell us what is different about university-industry collaboration now, compared with 5 or 10 years ago? Have you noticed any trends emerging that we might see driving partnerships in the future?

We’ve been in the space for around four years, and in this short period of time we’ve seen a shift towards greater openness between universities and industry. Local governments, especially in countries where the knowledge-economy is becoming more important as manufacturing starts to wind down, have in part aided this change. Education throughout the industry community through shared membership bodies has also been key to improving relationships.

There’s a highly cited statistic from the UK government commissioned Dowling Review, that only 2% of small and medium-sized enterprises (SMEs) would think to consult their local university if they came upon a technological challenge. This is something that needs to change. It’s crucial that governments continue to engage in improving university-industry collaboration, bringing down financial barriers which hinder interactions for smaller companies. Grants for joint projects help do this, and private grant-writing companies within the space also play a role for companies wanting to access money but unsure how to go about it.

In the UK the Impact Agenda, which formed part of the government’s Research Excellence Framework (REF) for 2014, was party to much scepticism. Universities were required to submit case studies regarding the Impact of their research on industry, governmental policy and direct public impact. The level of funding for universities was affected by the impact of these case studies which were each given a score. It meant quite a culture shift took place in UK universities, especially for academics whose funding is now directly linked to external engagement (at least partially).

IP and ownership concerns are considered by many in Australia as one of the most difficult barriers to university-industry collaboration. How can organisations do better at addressing IP?

It’s good timing for this question, as recently our Head of Growth, Owen Nicholson, was part of the group developing the UK government’s Lambert Toolkit. It was launched last week and comprises a set of contracts for use by university and industry undergoing partnership discussions. The Lambert Toolkit contracts are not set in stone, but provide a great starting place and will certainly speed up that initial discussion when it comes to IP rights. I could see these types of blueprints being used globally. Owen’s insights on the Lambert Toolkit can be found here.

The valuation of early-stage research is, to my mind, an incredibly difficult process. In some sense, this does give a potential industry partner a better stake in negotiations, but they take on larger amounts of risk in doing so. With all things contractual, it’s about negotiation and making sure both parties are comfortable with the arrangement.

Can you share with us any insights into other major global collaboration barriers?

We’re currently working on removing some other barriers, one of which is how companies access worldwide university expertise easily. Currently all I can say is ‘watch this space’, but lest to say we’re looking to further our vision of helping unlock university knowledge.

In your opinion, is there scope for better university-industry partnerships between Australia and the UK?

In our experience there should be no barriers to global collaboration and partnership, however some universities in certain locations have evolved research specialisms in line with their economy, providing cutting-edge developments within particular areas (e.g. renewable energy technology in coastal areas, or agricultural developments in areas surrounded by farmland).

Australia has a great diversity of research, developed by world-leading scientists, and our excitement at working with universities in the country is causative of our audience. Our industry users are forever keen for us to widen our breadth of technology and research available in new territories they’ve previously had little access to. For many in Europe and the U.S., especially SMEs, Australia represents such a territory.

To hear more from Dr Robin Knight about the blueprints to a global collaboration boom, click here.

profile_inpartrobin

Dr Robin Knight is Co-founder and Director of UK-based university-industry collaboration platform IN-PART.

Click here to find out more about global collaboration opportunities with IN-PART. To find more industry-ready technology from Australian universities, visit Source IP.

wheat

IP at the root of Australia’s wheat industry

Intellectual property has had a large role to play in moving wheat breeding from being almost entirely publicly funded in the 1990s to being completely funded by the private sector today.

Wheat accounts for more than a quarter of the total value of all crops produced in Australia. In terms of all agricultural commodities produced nationwide, wheat is second only to cattle. In the 2015/16 season, the Australian Bureau of Agricultural and Resource Economics and Sciences forecasted the gross value of wheat to be $7.45 billion, with exports worth $5.8 billion.

Western Australia leads the way in wheat exports, generating half of Australia’s total annual wheat production and sending more than 95 per cent offshore. A major export avenue for Western Australian growers is the wheat used for the production of noodles. One million tonnes of Udon noodle grain is exported to Japan and Korea every year at a value of $350 million.

The Australian wheat industry has gone through significant transformation in the last 20 years and the Australian IP Report 2015 shows innovation in wheat breeding is quite healthy. Over the past decade, Triticum (the scientific genus for wheat) has had the third highest number of plant breeder’s rights (PBR) applications submitted in Australia, behind only Rosa (roses) and Prunus (trees and shrubs).

The Plant Breeder’s Rights Act 1994 (PBR Act) allows an owner of a plant variety the ability to not only sell their variety, but also to collect royalties at any point in its use. This provision led to the introduction of end point royalties (EPR) in the years following the PBR Act’s ratification. For wheat growing, this is a royalty paid on the total grain harvested by the growers of a PBR protected variety.

Kerrie Gleeson of Australian Grains Technologies explains how EPR have invigorated the wheat industry saying, “Prior to the year 2000, 95 per cent of wheat breeding programs were in the public sector, either funded by universities, Grains Research and Development Corporation (GRDC) levies, or state governments.”

Moving ahead to the present day, Australian wheat breeding is now completely funded by the private sector due to the income generated by EPR.

Before EPR, royalties were paid to breeders when they sold their seed to farmers. Tress Walmsley, CEO of InterGrain, estimates that while a new variety of grain costs around $3 million to breed, under the old seed-based royalty system breeders only received around $50 000 per variety. This was a commercially unsustainable system and saw a decline in public investment for developing new varieties.

The EPR system radically changed the commercial value of developing new grain varieties in Australia. By deferring collection of royalties to the time of harvest, the initial cost of purchasing seed is lower.

An example of the EPR system in action is ‘Drysdale’, a wheat variety developed by CSIRO to cope with Australia’s low rainfall. Currently a royalty of $1 is charged to famers for every tonne produced. While this may not seem like much, considering the production of wheat averages around 25 million tonnes per year, the return from EPR really adds up.

Income received from EPR helps support the continuing research into developing new varieties and reduces the reliance on public funding.

The advantage of the EPR system is that plant breeders share the risk with farmers. If a harvest is low, for example during a drought, the farmers will be affected, and as a result the returns to the breeders through the EPR will be down. This gives breeders an incentive to develop varieties that are resilient and high yielding; the more successful the crop is, the bigger the return for both breeders and growers.

THE AUSTRALIAN WHEAT INDUSTRY HAS GONE THROUGH SIGNIFICANT TRANSFORMATION IN THE LAST 20 YEARS.

Wheat breeding in Australia is now a highly competitive industry. The major wheat breeding companies now have access to new technologies and resources through foreign investment and partnerships.

The EPR system in Australia has been dominated by wheat. The first EPR variety was released in 1996. Over 260 EPR varieties are listed for the 2015/16 harvesting season. Of these varieties, over 130 are wheat.

However, implementing the EPR system has seen its share of challenges. “When we first launched back in 1996…we actually had almost two competing systems”, Tress says. “We had one system commence in Western Australia which I was responsible for, and then we also had a company start an end point royalty system on the east coast.”

“Initially each plant breeding company, each state government and each seed company worked independently. We really made the big gains when we came together and worked it out collectively”, she says.

The development of an EPR industry collection system began in 2007 when a number of Australia’s major plant breeding organisations formed the EPR Steering Committee.

“The key component is working with the grain growers and listening to their feedback and making changes to how we collect the EPR so it is actually an easier system for them to utilise”, says Tress. “The industry standard license was one of our first achievements.”

The EPR is ultimately reliant on the honesty of farmers declaring the varieties they are growing. “Our system works in finding ways where the PBR Act gives you the level of protection you need, and you dovetail in contract law where you need some extra assistance”, adds Tress.

The integrity of EPR collection is maintained in various ways, including harvest declaration forms and reports from grain traders and bulk handlers. An industry standard contract has also been developed to simplify the collection process. The competitive nature of the EPR system means farmers are given a choice when deciding on which grain to grow. If they are paying a royalty on seed they are growing, they want to be confident the crop is high yielding, disease resistant and suitable for their region.

Even though research and development into wheat has been growing in recent years, the industry faces ongoing challenges. While Australia has so far avoided the notoriously devastating Ug99, a fungal wheat stem rust which can cause entire crops to be lost, farmers do tackle other varieties of stripe, stem and leaf rusts across the country. Nationwide, 72 per cent of Australia’s wheat growing area is susceptible to at least one rust pathogen.

This highlights the importance of continued investment into the development of new wheat breeds.

“We need the research to create high-yielding, disease and pest resistant agricultural crops,” Professor Philip Pardey says, who was a keynote speaker at the 2015 International Wheat Conference held in Sydney.

The International Year of Pulses aims to raise awareness of the nutritional benefits of pulses as part of sustainable food production. The celebration is an opportunity to encourage connections throughout the food chain – and one Australian team of researchers is ahead of the game.

Murdoch University professor John Howieson is now working on a new licence structure for the upcoming release of lebeckia. This grain, originally from South Africa, is considered the ‘holy grail’ breakthrough to rectify the shortage of summertime feed for livestock.

The new National Innovation and Science Agenda will support further agricultural research both with research funds and through programs that bring together universities, researchers and producers. You can find out more at innovation.gov.au.

This article was originally published by IP Australia in IP – Your Business Edge Issue 1 2016. Read the original article here.

research commercialisation

Research commercialisation is push and pull

‘It’s not me, it’s you’, is the message from universities to industry in terms of success in partnering and commercialisation of research and development.

Dr Leanna Read, Chief Scientist of South Australia and the founder and former CEO of TGR BioSciences, says universities are unfairly “bagged” for not pulling their weight in collaborating with industry and in fostering the development of research commercialisation partnerships.

“Our surveys have shown there is a strong interest in commercialisation and a willingness [in university research] to engage with industry,” she told the Australian Financial Review’s Innovation Summit in Sydney today.

“One of the issues is the nature of our industry sector. We are dominated by small to medium enterprises and we tend to be low in the level of innovation happening at this level. We have a problem here where research has all the will in the world to knock on doors of industry – the trouble is they’re not going to get a terribly good reception,” she says.

“We need to grow an innovative culture in these companies.”

TGR BioSciences focuses on drug discovery assay technologies and applies its core skills in cell biology to the development of new biodetection technologies.

Universities willing to engage

Emeritus Professor Jim Piper AM, President of Science and Technology Australia, and previously from Macquarie University, says there is a “high awareness” in universities to “encourage commercialisation”.

“There are impediments, however.

“One of the issues is the silo-isation of research which has been aided and abetted by the funding mechanism of universities.”

Many people forget that the university system is a service industry driven by international reputation, Piper points out. International students choose universities based on their impact factor and international reputation, and Australian universities rely heavily on liquidity from international students.

Shifting to a focus towards research commercialisation-based funding, or key performance indicators based on partnership success, the so-called ‘partner or perish’ is a massive shift in this context, he says – but one that universities are willing to make.

“One thing you can say about university researchers is they really chase the money. If that is in collaboration, then that is where they will chase it.

“One of the issues with unis is that, in most cases, commercialisation officers don’t have critical mass and there are challenges.”

For example, there are challenges in sharing and applying intellectual property (IP), he says.

“At Macquarie University, students at the start are invited to assign their intellectual property rights to the university so the uni can negotiate on their part. Often [in other universities] students keep their IP and this can be very complicated,” he told the summit.

Practice makes perfect

The problem may lie in experience in negotiations, says Professor Ian Frazer AC, Chair of the Medical Research Future Fund and inventor of the cervical cancer vaccine.

“We probably aren’t experienced enough at this negotiation [between academia and industry],” says Frazer. “There are excellent examples of industry-uni partnerships working, but there needs to be a lot of talk to make this happen.

“We’ve got to change both sides of the equation, for industries and universities. For example, the health sector relies on unis to provide input to research. We need to ensure that there is engagement between health researchers and industry, but industry needs to realise that research is critical to what it does,” he says.

Dr Steve Jones, global head of research and development at Australian R&D spin off cancer company Sirtex – a medical device company providing a radioactive treatment for inoperable liver cancer – agrees that universities have “had a rough ride” to make dramatic changes to the way they incentivise research to promote collaboration and research commercialisation.

Sirtex has approached universities to work on research but found that it worked best when they had an identifiable problem to take to the researchers, he told Science Meets Business.

Unis have work to do too

Read acknowledges that universities also have work to do, with funding for projects traditionally focussed on research project grants rather than looking to the issues faced by customers, the business approach controversially emphasised by CSIRO CEO Dr Larry Marshall, who also spoke at the summit.

“We need more of a ‘what is the problem and how do I solve it’ approach – this is what Cooperative Research Centres do well and we need more of that kind of research,” says Read.

More pull less push towards research commercialisation

Chief Defence Scientist Dr Alex Zelinksy says any successful negotiation “needs to be win-win” for both university and industry.

“There is a push and a pull element. There is a pioneering spirit (do it yourself) rather than an entrepreneurial spirit in terms of business and commercialisation of research. We need everyone to come together.”

He agrees that one of the barrier is around intellectual property. “Access to IP needs to be on fair and commercial terms.”

– Heather Catchpole

Read more: Collaborate or Crumble