Tag Archives: fashion

AMSIIntern

Disrupting the rag trade with 3D printing

Tec.Fit founder Tim Allison is a business owner bringing cutting edge technology applications to the global fashion industry. Using an innovative scanning app that outputs 3D models and measurements, Tec.Fits allows couturiers and customers to bypass the need to be in the same room when producing customised clothing. Australia’s emerging research talent is now contributing to Tec.Fit’s success.

Tec.Fit solves problems like poorly fitted garments when purchased online. It also offers the fashion industry scalable solutions for bespoke, custom designed clothing like suits, wedding attire and uniforms.

Coming from an international consumer tech background, Allison describes his business as one of the thousands of global companies that are disrupting e-commerce and the designer fashion industries.

Allison is now working with three Australian universities to develop the technology he needs to take his business to the next level by developing next generation 3D printers that can output at scale.

Working with AMSIIntern, a Commonwealth Government funded scheme that rebates engagement with PhD candidates in industry, Allison has been able to engage three PhD students as interns. Tec.Fit is working with PhD candidates from Swinburne, RMIT and Deakin universities and is on the hunt for a fourth PhD candidate to join the Sydney team.

While he knew from the start exactly what skillsets and specific expertise he needed from researchers, it took Allison about 12 months to find the right collaborator.

“I had one professor who said to me: ‘Tim I can definitely do your project – it’s no problem at all – but I am going to need to do eighteen more months of research.’ Eighteen months is a lifetime in technology terms!” said Allison.

Other difficulties he experienced along the way included negotiating with universities on IP ownership and getting priorities aligned with academic partners.

Tec.Fit founder TIm Allison

AMSIIntern Postgraduate Program

The AMSIIntern Postgraduate Program is a unique model for innovation that seeks to connect PhD candidates at universities across Australia with emerging business opportunities. The program builds valuable partnerships between industry and academia to create more collaboration and research commercialisation.

Business Development Manager Mark Ovens says that the AMSIIntern model is all about putting bright students into industry to give them critical workplace skills that enhance their specialist STEM research skills. Ovens describes the program as a stealthy means of uncovering hidden talent that is lurking in the depths of a research school rather than actively looking for work. While there is ample opportunity available, Ovens says that academic institutions can be slow in responding to the opportunities offered by business.

“In Canada, from where this program has evolved, they are placing hundreds of PhD students into industry each year. Around 50% of students have access to industry experience as a part of their doctoral experience. “In Australia the challenge for AMSI is to increase the intern programs per year with industry partners and we need help from all Australian Universities to supply the PhD’s students.” he said.

Ovens said that the scheme needs stronger support from both academia and industry to ensure that current PhD students get the chance to develop valuable industry experience before they graduate. With all Australian universities eligible to access AMSIIntern programs, the scheme provides a unique opportunity for businesses to access research talent.

“There is no employment. Rather, industry partners provide a contract for service and AMSIIntern liases with the relevant university so that the student gets paid a stipend by them,” say Ovens.

“The program allows industry partners to trial candidates during the 3–5 months for cultural and skills fit. At the end of a project they can release students to return to their studies, or if they have completed their degree, they can give them a job.”

Ovens says that the scheme is above all a low risk strategy.

“It’s also low cost with potential high returns as industry partners keep any IP that may result, making it easier to engage with universities,” he added.

Ovens said the project experience of the postgraduate student is at the heart of the scheme.

“Coached by their academic supervisor, industry experience brings new thinking, new ideas and experimentation to bear on challenges that the student must solve – an invaluable, real-world experience that will only enhance their future careers whether in academia or industry.”

Find out more about AMSIIntern here or read some case studies.

– Jackie Randles

luxury watch

Luxury watch brand partners with nanotech

Featured image above: Christophe Hoppe with his new Bauselite luxury watch casing. Credit: Flinders University/Bausele.

In 2015, Bausele became the first Australian luxury watch brand to be invited to Baselworld in Switzerland – the world’s largest and most prestigious luxury watch and jewellery expo. Its success is, in part, thanks to a partnership with nanotechnologists at Flinders University and a unique new material called Bauselite.

Founded by Swiss-born Sydneysider Christophe Hoppe, Bausele Australia bills itself as the first “Swiss-made, Australian-designed” watch company. 

The name is an acronym for Beyond Australian Elements. Each watch has part of the Australian landscape embedded in its crown, or manual winding mechanism, such as red earth from the outback, beach sand or bits of opal.

But what makes the luxury watches unique is an innovative material called Bauselite developed in partnership with Flinders University’s Centre of NanoScale Science and Technology in Adelaide. An advanced ceramic nanotechnology, Bauselite is featured in Bausele’s Terra Australis watch, enabling design elements not found in its competitors.

NanoConnect program fosters industry partnership

Flinders University coordinates NanoConnect, a collaborative research program supported by the South Australian Government, which provides a low-risk pathway for companies to access university equipment and expertise.

It was through this program that Hoppe met nanotechnologist Professor David Lewis, and his colleagues Dr Jonathan Campbell and Dr Andrew Block.

“There were a lot of high IQs around that table, except for me,” jokes Hoppe about their first meeting.

After some preliminary discussions, the Flinders team set about researching the luxury watch industry and identified several areas for innovation. The one they focused on with Hoppe was around the manufacture of casings.

Apart from the face, the case is the most prominent feature on a watch head: it needs to be visually appealing but also lightweight and strong, says Hoppe, who is also Bausele’s chief designer.

The researchers suggested ceramics might be suitable. Conventional ceramics require casting, where a powder slurry is injected into a mould and heated in an oven. The process is suitable for high-volume manufacturing, but the end product is often hampered by small imperfections or deformities. This can cause components to break, resulting in wasted material, time and money. It can also make the material incompatible with complex designs, such as those featured in the Terra Australis.

New material offers ‘competitive edge’

Using a new technique, the Flinders team invented a unique, lightweight ceramic-like material that can be produced in small batches via a non-casting process, which helps eliminate defects found in conventional ceramics. They named the high-performance material Bauselite.

“Bauselite is strong, very light and, because of the way it is made, avoids many of the traps common with conventional ceramics,” explains Lewis.

The new material allows holes to be drilled more precisely, which is an important feature in watchmaking. “It means we can make bolder, more adventurous designs, which can give us a competitive advantage,” Hoppe says.

Bauselite can also be tailored to meet specific colour, shape and texture requirements. “This is a major selling point,” Hoppe says. “Watch cases usually have a shiny, stainless steel-like finish, but the Bauselite looks like a dark textured rock.”

Bauselite made its luxury watch debut in Bausele’s Terra Australis range. The ceramic nanotechnology and the watch captured the attention of several established brands when it was featured at Baselworld.

Advanced manufacturing hub in Australia

Hoppe and the Flinders University team are currently working on the development of new materials and features.

Together they have established a joint venture company called Australian Advanced Manufacturing to manufacture bauselite.  A range of other precision watch components could be in the pipeline.

The team hopes to become a ‘centre of excellence’ for watchmaking in Australia, supplying components to international luxury watchmaking brands.

But the priority is for the advanced manufacturing hub to begin making Bausele watches onshore: “I’ve seen what Europe is good at when it comes to creating luxury goods, and what makes it really special is when people control the whole process from beginning to end,” says Hoppe. “This is what we want to do. We’ll start with one component now, but we’ll begin to manufacture others.”

Hoppe hopes the hub will be a place where students can develop similar, high-performance materials, which could find applications across a range of industries, from aerospace to medicine for bone and joint reconstructions.

– Myles Gough

This article was first published by Australia Unlimited on 10 November 2016. Read the original article here