Tag Archives: Bushfire and Natural Hazards CRC

Adapting to angry summers: Australian Bushfires

From her bush block in the Blue Mountains, Bianca Nogrady considers how researchers will tackle the ‘new normal’ for severe bushfire weather.

On February 7, 2009, several bushfires in Victoria burned through 450,000 hectares over two days, destroying more than 2000 homes, killing 173 people plus an estimated one million wild and domestic animals. 

Between September 2019 and March 2020, hundreds of bushfires burned through almost 19 million hectares across Australia, destroying more than 2500 homes, killing more than one billion birds, animals and insects, and driving many species to the brink of extinction. But the death toll was lower, at 33 people. 

Every one of those lives lost was a tragedy that devastated families, friends, colleagues and communities. But given the unprecedented scale, ferocity and duration of this season’s fires, the fact that comparatively few lives were lost suggests that since Black Saturday, we have made profound changes to the way we predict, understand and respond to bushfires. 

Many of those changes have come about because of the collaborative research undertaken by the Bushfire & Natural Hazards Cooperative Research Centre.

“We strongly believe the work of the CRC has been instrumental in reducing the death toll out of these fires,” says Dr Richard Thornton, Chief Executive Officer of the Bushfire & Natural Hazards CRC (BNH CRC). The relatively low death toll from the 2019–2020 bushfire season is astonishing to many people working with bushfires, especially given that there were several days during the season when conditions were as catastrophic as those experienced during the 2009 Black Saturday fires. 

Getting better, earlier warnings

One of the areas of change is communication: how, where, why and to whom emergency warnings are delivered, and the content and wording of those warnings. Communication has been an active area of research from the early days of the original Bushfire CRC, which was established in 2003 and morphed into a focal program of the current BNH CRC from 2013.

Associate Professor Amisha Mehta, a risk and crisis communications expert at the Queensland University of Technology (QUT) Business School, has been working with the BNH CRC on risk communication during bushfires and other natural hazards.

She says the wording of risk and emergency warnings is a delicate balancing act between trust and encouraging individual responsibility. 

“In our co-designed messages, we have enhanced trust but at the expense of reducing people’s perception of personal responsibility,” says Mehta. “So we learn from that and talk about ways to maintain trust and enhance or build people’s ability or confidence in being able to take the actions needed.”

Extensive research on how people respond to emergency warnings and risk messages has led to some bushfire and emergency agencies changing the wording of their message headings. The three tiers of ‘Advice’, ‘Watch and Act’ and ‘Emergency Warning’ are classifications firmly embedded into the way emergency management organisations work since the Black Saturday bushfires.

However, those headings don’t necessarily reflect the way individuals think in a bushfire situation. Instead, some agencies are switching to what Mehta describes as more ‘community-minded’ language. “Instead of ‘emergency warning’, the lead is ‘leave now’, or ‘leave immediately’, or ‘shelter in place’, so it’s the behaviour that is captured in the heading,” she says. 

After those headings comes more detailed information about the location and type of hazard, timing and other aspects. 

For example, the Queensland Fire and Emergency Services have amended their headings to ‘Advice: monitor conditions’, ‘Watch and Act: conditions are changing’, and ‘Emergency: you are in danger’. 

Mehta and her colleagues’ research also showed that adding a reason for the warning helped the message get across. “If you add a rationale, such as ‘leaving now is your safest option’, even though it makes the message longer, it enhances residents’ self-efficacy, so it makes them feel more confident in taking the behaviour.”

NSW Rural Fire Service and BNH CRC researchers. Image: BHN CRC

When to leave and who to tell

Another active area of CRC-led research is when and to whom those messages should be sent. 

Bushfire predictions have taken a quantum leap forward in recent years with the development of a variety of computerised modelling systems that can predict bushfire risk from as far out as one year ahead of a season to an hour-by-hour update on where a bushfire is likely to spread or its embers land.

Two products helping fire agencies calculate risk are Phoenix and SABRE Fire. Ben Twomey is a fire behaviour analyst and executive manager of advanced capability in the Queensland Fire and Emergency Services, and he works with both these fire modelling systems. “Part of the reason for the comparatively low number of deaths this season is the prediction capability and our ability to get people out of the way of fires that we know are going to be catastrophically bad,” he says. 

Phoenix is a fire simulator program developed by the Bushfire CRC and the University of Melbourne. It characterises fire spread across the landscape based on forecast weather — temperature, humidity, wind speed and direction — fuel maps, topography of the landscape, wind modification by the landscape, vegetation, the fire history of an area and other factors such as roads, fire breaks and rivers.

When that data is put into the system, along with weather inputs to account for factors like the effect of pyrocumulonimbus, the output is a map forecasting where that fire is likely to spread to in the next hours and days. 

But as anyone who has ever tried to plan a picnic knows, the weather forecast is a probabilistic prediction; it offers a likelihood — not a certainty — of the weather being a certain way. To account for that element of uncertainty, there’s SABRE Fire. 

“We don’t know those inputs with a great deal of certainty and we’d rather be broadly right than precisely wrong,” says Twomey. 

SABRE Fire calculates a range of scenarios by varying some of the inputs at random, like a much higher wind speed or much lower humidity, “so when we talk about worst case scenarios, theoretically it’s already built in”.

When fire controls the weather

There are some wildcards in fire behaviour modelling and pyroconvective fire behaviour is one of those. This refers to the enormous weather systems that can develop above intense fires — so-called ‘fire thunderstorms’ — and drastically alter weather and fire behaviour. “It’s like putting a chimney on top of the fire and getting a nice big draw around the edge – it goes berserk,” says Twomey.  

Research by the BNH CRC has worked out the minimum heat required for these pyrocumulonimbus systems to develop in various environments, which should help better forecast these events and allow for their incorporation into fire behaviour modelling. 

This research will be part of the next generation of fire spread models, which includes weather modelling conducted by the Bureau of Meteorology, as well as in more real-time models being developed with CSIRO and capable of being used in control centres just like Phoenix. 

Even with all the best predicting, forecasting and messaging, people and properties are still being caught in bushfires. Understanding how and why that happens is the question Dr Josh Whittaker from the University of Wollongong and the BNH CRC is trying to answer.

After fires have passed through, Whittaker and colleagues visit those communities and interview residents about their awareness of bushfire risk, what planning and preparations they had done before the fire, what information and warnings they received and how they responded. 

“Those findings are fed back into fire services to help them better communicate with communities and better prepare them for bushfire in the future,” says Whittaker. 

Having worked on many fires since the devastating Black Saturday bushfires, Whittaker says there is always a wide range of preparedness levels in the community.

“There always seem to be people who have done little or nothing to prepare and therefore have difficult experiences in fires,” he says. “Through to the other end of the spectrum, where people are very well prepared and are either able to safely leave, as is their plan, or remain to defend their farms or houses.”

Understanding those decisions is critical to helping shape messaging and awareness campaigns about bushfire preparedness. Whittaker says one interesting finding is how many people in bushfire-exposed areas are unaware they are even at risk.

One change he has seen over time is greater focus and understanding of the ‘leave early’ message during bushfires.

There’s also greater awareness of the high level of planning and preparation that is required by anyone thinking of staying to defend their property. And it seems the most important message is being heard: don’t leave anything to the last minute.

Moving forward

There is a mountain of research to be done after this bushfire season, which will help researchers understand what contributed to the severity of this season and how well predictions, preparedness and response systems worked. But there is also the question of how Australia’s experience of bushfires will change in the future. 

There is also population growth and how that changes the relationship between humans and the bush. There is the question of settlement strategies and decisions by local and state governments, and what role the insurance industry will play in that.

There are new technologies that will present opportunities and challenges, when it comes to preparedness and response to bushfires. And finally, there is perhaps the greatest challenge of all: climate change.


The Disruptors

Disruption can mean a lot of things. Dictionary definitions include “a forcible separation” or division into parts. More recently it has come to mean a radical change in industry or business. This brings to mind huge technological innovations. But what if it’s as simple as realising that a handheld device for detecting nitrogen could also be used to gauge how much feed there is in a paddock; that drones can be adapted to measure pest infestations; that communities can proactively track the movement of feral animals.

These are just some of the projects that Cooperative Research Centres (CRCs) are working on that have the capacity to change crop and livestock outcomes in Australia, improve our environment and advance our financial systems.

Data and environment

Mapping pest threats

Invasive animals have long been an issue in Australia. But a program developed by the Invasive Animals CRC called FeralScan is taking advantage of the widespread use of smartphones to combat this problem.

The program involves an app that enables landholders to share information about pest animals and the impacts they cause to improve local management programs.

Peter West, FeralScan project coordinator at the NSW Department of Primary Industries, says the team wouldn’t have thought of a photo-sharing app without genuine community consultation.

The project has been running for six years and can record sightings, impacts and control activities for a wide range of pest species in Australia, including rabbits, foxes, feral cats, cane toads and myna birds. West says that it now has 70,000 records and photographs, and more than 14,000 registered users across the country.


“For regional management of high-impacting pest species, such as wild dogs, what we’re providing is a tool that can help farmers and biosecurity stakeholders detect and respond quickly to pest animal threats,” says West.

“It enables them to either reprioritise where they are going to do control work or to sit down and work with other regional partners: catchment groups, local biosecurity authorities and the broader community.”

The app won the Environment and Energy Minister’s award for a Cleaner Environment in the field of Research and Science excellence at the Banksia Foundation 2016 Awards in December. Recent improvements to the app include the ability to monitor rabbit bio-control agents.Plans for the future include upgrading the technology to alert farmers to nearby pest threats, says West.

Find out more at feralscan.org.au

Revising disaster warnings

Also in the information space, the Bushfire and Natural Hazards CRC (BNHCRC) is investigating reasons we don’t pay attention to or ignore messages that notify us of an impending fire or floods. Researchers are using theories of marketing, crisis communications and advertising to create messaging most likely to assist people to get out of harm’s way.

“The way we personally assess risk has a big impact on how we interpret messages. If I have a higher risk tolerance I will probably underestimate risk,” says Vivienne Tippett, BNHCRC project lead researcher and professor at Queensland University of Technology. “We’ve worked with many emergency services agencies to assist them to reconstruct their messages.”

Instead of an emergency message with a brief heading, followed by the agency name and then a quite technical paragraph about weather conditions and geography, Tippett’s team has worked on moving the key message up to the top and translating it into layperson terms. For example, a message might now say something like: “This is a fast-moving, unpredictable fire in the face of strong winds.”

Tippett’s team is constantly working with emergency services to make sure their findings are made use of as quickly as possible. “The feedback from the community is that yes, they understand it better and they would be more likely to comply” she says.

Find out more at bnhcrc.com.au


Measuring plant mass and pests in crops

The Plant Biosecurity CRC is using unmanned aerial systems (UAS or drones) to improve ways to detect pest infestations in vast crops. Project leader Brian McCornack is based at the Kansas State University in the US.

“The driver for using unmanned aerial systems has been in response to a need to improve efficiency [reduce costs and increase time] for surveillance activities over large areas, given limited resources,” says McCornack. “The major game-changer is the affordability of existing UAS technology and sophisticated sensors.”

Unmanned aerial vehicle Credit: Kansas State University

The project is now in its third year and adds an extra layer of data to the current, more traditional system, which relies on a crop consultant making a visual assessment based on a small sample area of land, often from a reduced vantage point.

The international collaboration between the US and the Australian partners at QUT, Queensland Department of Agriculture and Fisheries, and the NSW Department of Primary Industries means the project has access to a wide range of data on species of biosecurity importance.

Unmanned aerial system (drone) pilots, Trevor Witt (left) and Dr Jon Kok (right) from the Plant Biosecurity CRC project, discuss data collected from a hyperspectral camera. Credit: Brian McCornack, Kansas State University

The CRC for Spatial Information (CRCSI) has also been working on repurposing an existing gadget, in this case to improve the accuracy of estimating pasture biomass. Currently, graziers use techniques such as taking height measurements or eyeballing to determine how much feed is available to livestock in a paddock. However, such techniques can result in huge variability in estimates of pasture biomass, and often underestimate the feed-on-offer.

Professor David Lamb, leader of the Biomass Business project, says graziers underestimate green pasture biomass by around 50%. There could be a huge potential to improve farm productivity by getting these measures right.

Through case studies conducted on commercial farms in Victoria, Meat and Livestock Australia found that improving feed allocation could increase productivity by 11.1%, or up to $96 per hectare on average, for sheep enterprises, and 9.6% ($52 per hectare) for cattle enterprises.

The CRCSI and Meat and Livestock Australia looked at a number of devices that measure NDVI (the normalised difference vegetation index), like the Trimble Green Seeker® and the Holland Crop Circle®. The data collected by these devices can then be entered into the CRCSI app to provide calibrated estimates of green pasture biomass.

Graziers can also create their own calibrations as they come to understand how accurate, or inaccurate, their own estimates have been. These crowd-sourced calibrations can be shared with other graziers to increase the regional coverage of calibrations for a range of pasture types throughout the year.

Find out more at pbcrc.com.au and crcsi.com.au

Using big data on the farm

In July 2016, the federal government announced funding for a partner project “Accelerating precision agriculture to decision agriculture”. The Data to Decisions Cooperative Research Centre (D2D CRC) has partnered with all 15 rural research and development corporations (RDCs) on the project. 

“The goal of the project is to help producers use big data to make informed on-farm decisions to drive profitability,” says D2D CRC lead Andrew Skinner.

He says that while the project may not provide concrete answers to specific data-related questions, it will provide discussion projects for many issues and concerns that cross different rural industries, such as yield optimisation and input efficiencies. 

Collaboration between the 15 RDCs is a first in Australia and has the potential to reveal information that could shape a gamut of agricultural industries. “Having all the RDCs come together in this way is unique,” says Skinner. 

Global markets

The Capital Markets CRC, in conjunction with industry, has developed a system that allows it to issue and circulate many digital currencies, securely and with very fast processing times – and because it is a first mover in this space, has the potential to be a global disruptor.

Digi.cash is a spinoff of the Capital Markets CRC and is specifically designed for centrally issued money, like national currencies. 

“Essentially we have built the printing press for electronic coins and banknotes, directly suited to issuing national currencies in digital form, as individual electronic coins and banknotes that can be held and passed on to others,” says digi.cash founder Andreas Furche.

A currency in digi.cash’s system is more than a balance entry in an accounts database, it is an actual encrypted note or coin. The act of transfer of an electronic note itself becomes the settlement. This is in contrast to legacy systems, where transaction ledgers are created that require settlement in accounts. So there is no settlement or clearing period.

“We have a advantage globally because we were on the topic relatively early and we have a group of people who have built a lot of banking and stock exchange technologies in the past, so we were able to develop a product which held up to the IT securities standards used in banking right away,” says Furche.

Digi.cash is currently operating with a limit of total funds on issue of $10 million. It is looking to partner with industry players and be in a leading position in the development of the next generation financial system, which CMCRC says will be based on digitised assets.

Find out more at digi.cash


Passive radar, as developed by the Defence Science and Technology Group (DST), has been around for some time, but is being refined and re-engineered in an environment where radiofrequency energy is much more common.  

As recognition of the disruptive capabilities of this technology, the Passive Radar team at DST was recently accepted into the CSIRO’s innovation accelerator program, ON Accelerate.

Active radar works by sending out a very large blast of energy and listening for reflections of that energy, but at the same time it quickly notifies anyone nearby of the transmitter’s whereabouts.

“Passive radar is the same thing, but we don’t transmit any energy – we take advantage of the energy that is already there,” explains passive radar team member James Palmer.

The technology is being positioned as a complement for active radar. It can be used where there are more stringent regulations around radar spectrum – such as the centre of a city as opposed to an isolated rural area. Radio spectrum is also a finite resource and there is now so much commercial demand that the allocation for Defence is diminishing.

Although the idea of passive radar is not a new one – one of the first radar presentations in the 1930s was a passive radar demonstration – the increase in radiofrequency energy from a variety of sources these days means it is more efficient. For example, signals from digital TV are much more suited to passive radar than analogue TV.

“We are at the point where we are seeing some really positive results and we’ve been developing commercial potential for this technology,” Palmer says. “For a potentially risky job like a radar operator the ability to see what’s around you [without revealing your position], that’s very game changing.”

There is also no need to apply for an expensive spectrum licence. The Australian team is also the first in the world to demonstrate that it can use Pay TV satellites as a viable form of background radiofrequency energy. The company name Silentium Defence Pty Ltd has been registered for the commercial use of the technology.

Find out more at silentiumdefence.com.au

– Penny Pryor

For more CRC discovery, read KnowHow 2017.

You might also enjoy Beat the News with digital footprints.

Mental health emergency

World-first research by beyondblue and the Bushfire and Natural Hazards CRC will invite up to 20,000 current and former personnel from 34 police and emergency organisations across Australia to participate in a survey about their mental health and risk of suicide.

As part of the National mental health and wellbeing study of police and emergency services, beyondblue is working closely with employers, personnel and their families on practical strategies to improve the mental health of police and emergency services workers and volunteers.

It is the first time data is being collected on a national scale from police and emergency service organisations. The emergency services health research is being conducted in three phases after qualitative analysis was gathered in phase one last year.

From August 2017, police and emergency service workers will be surveyed about their wellbeing; common mental health conditions; suicide risk; stigma; help-seeking behaviour; and factors supporting, or jeopardising, mental health in the workplace.

The University of Western Australia and Roy Morgan Research are working together on phase two of the emergency services health study, which is expected to conclude in December.

The Bushfire and Natural Hazards CRC has provided a funding contribution to the study and will support beyondblue’s work.

“The only national statistic we have about the mental health of police and emergency service workers is a devastating one – 110 Australian police and emergency services workers died by suicide between 2010 and 2012,” says beyondblue CEO Georgie Harman.

“Beyondblue’s reputation is based on its use of scientifically sound, evidence-based research from which we build and develop programs to promote a better understanding of depression and anxiety and suicide prevention.”

Bushfire and Natural Hazards CRC CEO Dr Richard Thornton says the project will provide important information to understand both the number of people affected and the range of issues they face.

“The understanding we gain will be used to design interventions to support them and their families and improve personal, family and agency outcomes,” says Thornton.

In phase one, completed in November last year by Whereto Research, current and former police and emergency service employees, volunteers and family members were interviewed about their experiences of mental health conditions in which participants felt at risk of suicide.

Initial findings suggest:

  • the nature of the stigma associated with mental health conditions differs across police, fire and rescue and ambulance services;
  • although exposure to trauma is seen as an underlying cause for post-traumatic stress disorder, workplace culture and practices also contribute to the prevalence of mental health conditions;
  • working in police and emergency services, particularly for volunteers, can support workers’ mental health.

“In phase three, beyondblue will work alongside police and emergency service organisations to identify strategies to practically address the issues raised by the findings of this research,” says Harman.

These evidence-based strategies will support individuals, improve organisational culture and address systemic concerns that impact on mental health and wellbeing across the sector nationally.

They will be developed in collaboration with a cross-section of the police and emergency services sector including agencies, unions, government departments, individuals and family and community groups around Australia.

This article on emergency services health research was first published by the Bushfire and Natural Hazards CRC. Read the original article here.