Tag Archives: safety

Australia could lead in cybersecurity research

This article is part of The Conversation’s series on the Science and Research Priorities recently announced by the Federal Government. You can read the introduction to the series by Australia’s Chief Scientist, Ian Chubb, here.

Alex Zelinsky

Chief Defence Scientist, Defence Science and Technology

The national science and research priorities have been developed with the goal of maximising the national benefit from research expenditure, while strengthening our capacity to excel in science and technology.

Cybersecurity has been identified as a research priority due to Australia’s increasing dependence on cyberspace for national well-being and security. Cyberspace underpins both commercial and government business; it is globally accessible, has no national boundaries and is vulnerable to malicious exploitation by individuals, organised groups and state actors.

Cybersecurity requires application of research to anticipate vulnerabilities, strengthen cyber systems to ward off attacks, and enhance national capability to respond to, recover from, and continue to operate in the face of a cyber-attack.

Cyberspace is a complex, rapidly changing environment that is progressed and shaped by technology and by how the global community adopts, adapts and uses this technology. Success in cyberspace will depend upon our ability to “stay ahead of the curve”.

Research will support the development of new capability to strengthen the information and communications systems in our utilities, business and government agencies against attack or damage. Investment will deliver cybersecurity enhancements, infrastructure for prototype assessment and a technologically skilled workforce.

Accordingly, priority should be given to research that will lead to:

  1. Highly secure and resilient communications and data acquisition, storage, retention and analysis for government, defence, business, transport systems, emergency and health services
  2. Secure, trustworthy and fault-tolerant technologies for software applications, mobile devices, cloud computing and critical infrastructure
  3. New technologies for detection and monitoring of vulnerabilities and intrusions in cyber infrastructure, and for managing recovery from failure. Alex Zelinsky is Chief Defence Scientist at Defence Science and Technology Organisation.
Cybersecurity is becoming an increasingly important area for research in Australia.
Cybersecurity is becoming an increasingly important area for research in Australia.

Andrew Goldsmith
Director of the Centre for Crime Policy and Research, Flinders University

Sensible science and research on cybersecurity must be premised upon informed, rather than speculative, “what if”, analysis. Researchers should not be beholden to institutional self-interest from whichever sector: government; business; universities; or security/defence agencies.

We need to be clear about what the cybersecurity threat landscape looks like. It is a variable terrain. Terms such as “cyber-terrorism” tend to get used loosely and given meanings as diverse as the Stuxnet attack and the use of the internet by disenchanted converts to learn how to build a pipe bomb.

We need to ask and answer the question: who has the interest and the capability to attack us and why?

References to “warfare” can be misleading. A lot of what we face is not “war” but espionage, crime and political protest. More than two decades into the lifecycle of the internet, we have not yet had an electronic Pearl Harbour event.

Cybersecurity depends upon human and social factors, not just technical defences. We need to know our “enemies” as well as ourselves better, in addition to addressing technical vulnerabilities.

We should be sceptical about magic bullet solutions of any kind. Good defences and secure environments depend upon cooperation across units, a degree of decentralisation, and built-in redundancy.

Andrew Goldsmith is Strategic Professor of Criminology at Flinders University.

Jodi Steel
Director, Security Business Team at NICTA

Cybersecurity is an essential underpinning to success in our modern economies.

It’s a complex area and there are no magic bullet solutions: success requires a range of approaches. The national research priorities for cybersecurity highlight key areas of need and opportunity.

The technologies we depend on in cyberspace are often not worthy of our trust. Securing them appropriately is complex and often creates friction for users and processes. Creation of secure, trustworthy and fault-tolerant technologies – security by design – can remove or reduce security friction, improving overall security posture.

Australia has some key capabilities in this area, including cross-disciplinary efforts.

The ability to detect and monitor vulnerabilities and intrusions and to recover from failure is critical, yet industry reports indicate that the average time to detect malicious or criminal attack is around six months. New approaches are needed, including improved technological approaches as well as collaboration and information sharing.

Success in translating research outcomes to application – for local needs and for export – will be greater if we are also able to create an ecosystem of collaboration and information sharing, especially in the fast-moving cybersecurity landscape.

Jodi Steel is Director, Security Business Team at NICTA.

Vijay Varadharajan
Director, Advanced Cyber Security Research Centre at Macquarie University

Cyberspace is transforming the way we live and do business. Securing cyberspace from attacks has become a critical need in the 21st century to enable people, enterprises and governments to interact and conduct their business. Cybersecurity is a key enabling technology affecting every part of the information-based society and economy.

The key technological challenges in cybersecurity arise from increased security attacks and threat velocity, securing large scale distributed systems, especially “systems of systems”, large scale secure and trusted data driven decision making, secure ubiquitous computing and pervasive networking and global participation.

In particular, numerous challenges and opportunities exist in the emerging areas of cloud computing, Internet of Things and Big Data. New services and technologies of the future are emerging and likely to emerge in the future in the intersection of these areas. Security, privacy and trust are critical for these new technologies and services.

For Australia to be a leader, it is in these strategic areas of cybersecurity that it needs to invest in research and development leading to new secure, trusted and dependable technologies and services as well as building capacity and skills and thought leadership in cybersecurity of the future.

Vijay Varadharajan is Director: Advanced Cyber Security Research Centre at Macquarie University.

Cybercrime is a growing problem, and it'll take concerted efforts to prevent it escalating further. Brian Klug/Flickr, CC-BY NC
Cybercrime is a growing problem, and it’ll take concerted efforts to prevent it escalating further. Brian Klug/Flickr, CC-BY NC

Craig Valli
Director of Security Research Institute at Edith Cowan University

ICT is in every supply chain or critical infrastructure we now run for our existence on the planet. The removal or sustained disruption of ICT as a result of lax cybersecurity is something we can no longer overlook or ignore.

The edge between cyberspace and our physical world is blurring with destructive attacks on physical infrastructure already occurring. The notion of the nation state, and its powers and its abilities to cope with these disruptions, are also significantly being challenged.

The ransacking of countries’ intellectual property by cyber-enabled actors is continuing unabated, robbing us of our collective futures. These are some of the strong indicators that currently we are getting it largely wrong in addressing cybersecurity issues. We cannot persist in developing linear solutions to network/neural security issues presented to us by cyberspace. We need change.

The asymmetry of cyberspace allows a relatively small nation state to have significant advantage in cybersecurity, Israel being one strong example. Australia could be the next nation, but not without significant, serious, long-term, collaborative investments by government, industry, academy and community in growing the necessary human capital. This initiative is hopefully the epoch of that journey.

Craig Valli is Director of Security Research Institute at Edith Cowan University.

Liz Sonenberg
Professor of Computing and Information Systems, and Pro Vice-Chancellor (Research Collaboration and Infrastructure) at University of Melbourne

There are more than two million actively trading businesses in Australia and more than 95% have fewer than 20 employees. Such businesses surely have no need for full-time cybersecurity workers, but all must have someone responsible to make decisions about which IT and security products and services to acquire.

At least historically, new technologies have been developed and deployed without sufficient attention to the security implications. So bad actors have found ways to exploit the resulting vulnerabilities.

More research into software design and development from a security perspective, and research into better tools for security alerts and detection is essential. But such techniques will never be perfect. Research is also needed into ways of better supporting human cyberanalysts – those who work with massive data flows to identify anomalies and intrusions.

New techniques are needed to enable the separation of relevant from irrelevant data about seemingly unconnected events, and to integrate perspectives from multiple experts. Improving technological assistance for humans requires a deep understanding of human cognition in the complex, mutable and ephemeral environment of cyberspace.

The cybersecurity research agenda is thus only partly a technical matter: disciplines such as decision sciences, organisational behaviour and international law all must play a part.

Liz Sonenberg is Professor, Computing and Information Systems, and Pro Vice-Chancellor (Research Collaboration and Infrastructure) at University of Melbourne.

Sven Rogge
Professor of Physics and Program Manager at the Centre for Quantum Computation & Communication Technology at UNSW

Cybersecurity is essential for our future in a society that needs to safeguard information as much as possible for secure banking, safe transportation, and protected power grids.

Quantum information technology will transform data communication and processing. Here, quantum physics is exploited for new technologies to protect, transmit and process information. Classical cryptography relies on mathematically hard problems such as factoring which are so difficult to solve that classical computers can take decades. Quantum information technology allows for an alternative approach to this problem that will lead to a solution on a meaningful timescale, such as minutes in contrast to years. Quantum information technology allows for secure encoding and decoding governed by fundamental physics which is inherently unbreakable, not just hard to break.

Internationally, quantum information is taking off rapidly underlined by large government initiatives. At the same time there are commercial investments from companies such as Google, IBM, Microsoft and Lockheed Martin.

Due to long term strategic investments in leading academic groups Australia remains at the forefront globally and enjoys a national competitive advantage in quantum computing and cybersecurity. We should utilise the fact that Australia is a world leader and global player in quantum information science to provide many new high technology industries for its future.

Sven Rogge is Professor of Physics at UNSW Australia.

This article was originally published on The Conversation and shared by Edith Cowan University on 10 July 2015. Read the original article here.

Read more in The Conversation Science and Research Priorities series.

The future of manufacturing in Australia is smart, agile and green

On the road: research can improve transport across Australia

Research priority: make Australia’s health system efficient, equitable and integratedThe Conversation

Shark detection

Sharks have an incredible sense of smell, but it is their sense of hearing that could be one of the keys to protecting people at beaches, says a team of researchers led by Dr Christine Erbe from Curtin University’s Centre for Marine Science and Technology.

“We had this idea of trying to figure out what acoustic signatures humans make, whether the sharks can hear them, and, if appropriate, whether we can somehow interrupt that,” says Erbe. These interruptions could then potentially be used to ‘hide’ or ‘mask’ the noises people make in the water from the sharks.

Western Australia is a pertinent place to work on this project, given the debate over baited drum lines to cull sharks, and the project has been funded by Western Australia’s Department of Commerce.

Initial recordings have been made of people in a pool swimming and snorkelling past a hydrophone – a microphone designed to record or listen to underwater sound. Erbe’s team records people swimming and surfing at beaches to see how far their noises travel. These sounds can then be played to sharks in enclosures at Ocean Park Aquarium in Shark Bay to check for any responses.

“If we see responses from the sharks, the next step is to figure out if we can mask the sounds of people in the water using artificial signals,” says Erbe. These artificial signals are band-limited white noise, created digitally. “We can see which frequencies, or part of the human sound signature, could be detected by the sharks and calculate the range limits at which that might occur. We can then design masking signals that fill in around them so those frequencies can’t be detected,” she says. The team will test these masking signals by playing them back to the sharks at Ocean Park Aquarium.

The outline of a shark shows clearly on a scanner used by the Curtin team.
The outline of a shark shows clearly on a scanner used by the Curtin team.

This masking technique is different to other approaches where loud sounds are played at beaches to scare sharks away. The problem with the loud sound approach, says Erbe, is that it potentially interferes with an entire underwater ecosystem. The masking approach, on the other hand, is targeted at frequencies and levels that only sharks can hear in the surf zone. “We’re not looking at scaring the sharks away, we’re just limiting them from detecting humans,” she says.

According to Erbe, a multidisciplinary approach is crucial to solving problems such as shark mitigation, and her team ranges from physicists to acousticians, engineers and marine biologists.

Team member Dr Miles Parsons is leading another project on the sonar detection of sharks with the aim of building an early warning system. “The solution will have to be a combination of detecting sharks and preventing them detecting us,” says Erbe.

Ruth Beran


Pipeline design for a safer future

JUST AFTER 6pm on 9 September 2010, a massive explosion rocked the Californian suburb of San Bruno. Within seconds, a house was engulfed in flames. More homes were soon burning ferociously. The cause was unknown for almost an hour. Some residents thought a plane had crashed at nearby San Francisco Airport. Others believed there had been an earthquake, as San Bruno lies close to the San Andreas Fault.

In fact, a 76 cm gas transmission pipeline had ruptured, killing eight people and destroying 38 homes.

Professor Valerie Linton, CEO of the Energy Pipelines CRC (EPCRC), has a mission to make sure such a pipeline disaster never happens in Australia.

“We’ve got a safety record at least an order of magnitude better than any other country in terms of our operation of energy pipelines. And we want to make sure it stays that way,” she says. “There’s always a risk that somebody gets overly enthusiastic with a digger and makes a hole or fracture in a pipeline. In the worst case, the fracture ‘unzips’ along the pipe. Our researchers have been working to ‘design out’ the possibility of fractures occurring, and that work has been exceptional.”

An Australian gas pipeline being lowered into its trench.
An Australian gas pipeline being lowered into its trench.

The EPCRC is a collaboration between four universities, the Australian Government and members of the Australian Pipeline Industry Association. One particularly significant product of its research is the recently released computer software called EPDECOM, which Linton describes as a leader in its field. Pipeline designers can use the software to determine the steel properties needed to enable the pipeline to withstand damage.

“North American fracture control experts have independently assessed EPDECOM, and it performs better than any other software available,” says Linton.

The CRC is also helping to improve Australian Standard AS2885 that applies to the pipeline industry. This relates to the design, construction, testing, operations and maintenance of gas and petroleum pipelines that operate at pressures above 1050 kPa.

“One of the most direct ways we can influence pipeline safety is to make sure our research findings get incorporated into upgrades of AS2885,” explains Linton.

An independent testing and research laboratory specialising in pipeline coatings opened in March 2104 at Deakin University – a CRC partner. Testing the integrity of pipeline coatings is vital if pipes are to be protected from corrosion.

While much of the EPCRC’s work is in engineering, social science also plays a central role. Dr Jan Hayes, Program Leader for Public Safety and Security of Supply, says inquiries into most accidents do not reveal new types of equipment failure. Usually the technological issues are already understood, but the knowledge isn’t applied because of social issues within organisations.

One of Hayes’ key goals is to harness the learning from pipeline incidents around the world. Hayes has co-authored a book: Nightmare Pipeline Failures: Fantasy Planning, Black Swans And Integrity Management. Its intended audience is senior executives in energy and chemical companies, but it will be publicly available and Linton describes it as “very readable”. The CRC funded Hayes’ research on the San Bruno disaster, which is included in the book. It’s another step towards keeping Australian energy pipelines safe