Tag Archives: physics

Dr Parappilly with physics Lego race car

LEGO® race cars put physics students in pole position

LEGO® race cars put physics students in pole position

A new teaching approach involving racing cars made of LEGO® has transformed the way that students at Flinders University are learning the fundamentals of science and has significantly reduced early dropout rates for introductory physics.     

The approach, outlined in the American Journal of Physics[1] by Flinders academics, has shown that tailored activities involving LEGO® race cars not only help students grasp theoretical concepts such as measurement error and variability, but also improve their lab reporting skills, engagement and confidence. 

“Many undergraduate students come to our introductory physics course without basic science skills or any prior exposure to physics or mathematics at high school level,” explains lead researcher of the LEGO® teaching model, Dr Maria Parappilly.

“This can make lab work exceptionally challenging, and is a major factor in the high early drop-out rate we witness for this topic.”

As a consequence, Dr Parappilly and her team were inspired to design a teaching approach that introduced students enrolled in first-year physics to pivotal scientific ideas in a real-world way, and that helped them grasp the very important but abstract concept of uncertainty in physics.

“We devised a series of experiments involving LEGO® race cars, which students could relate to and which helped them relax and feel more capable of utilising the tools of science.

“Initially students were asked to measure the time taken for a LEGO® race car to travel a set distance, using different starting points.

“Then we introduced a ramp of variable height, with either a smooth, low-friction surface or a rough, high-friction surface, and invited students to conduct the experiment again.

“Later the students were given cars of different designs that had different wheels, weights and heights, and were asked to repeat their car race.

“Throughout these exercises, students were encouraged to consider the limitations of their equipment, the impact of gravity and outside factors on the experiment results, the sources and magnitude of uncertainty, the role of constants and variables, and the validity of the experiment design and how it could be changed to improve its reliability,” Dr Parappilly says.

“Students were able to grasp fundamental concepts such as the formulae for speed, velocity and acceleration, potential and kinetic energy, and how to calculate track angles,” Dr Parappilly says.

As a result of the LEGO® teaching model, students reported that they felt less anxious about participating in lab sessions and more prepared to continue with scientific study.

They also reported improved skills in preparing lab reports and objectively evaluating lab results. 

“Importantly, all the students who attended our first round of LEGO® sessions continued on in the topic,” says Dr Parappilly. 

“Since then, the student attrition rate for the introductory physics topic at Flinders University has significantly slowed year-on-year.

“The use of LEGO® race cars sounds simple, but it has afforded our students a unique opportunity to relate a familiar educational toy to the process of scientific enquiry, and observe, record and analyse phenomena in a way that is more meaningful and concrete than ever before,” Dr Parappilly says.

The LEGO® physics approach pioneered at Flinders University is currently being rolled-out at universities interstate and is also being used by some South Australian high schools.

 

Parappilly M., Hassam C. and Woodman R. (2018). ‘Race to improve student understanding of uncertainty: Using LEGO® race cars in the physics lab’, American Journal of Physics, vol. 86, no. 1, pp. 68-76.

About Dr Maria Parappilly

Dr Maria Parappilly is an award winning Physics Educator and Research Section Head for STEM Education at Flinders University.  Her pioneering teaching innovations have been recognised with state and national awards, and internationally with the only international D2L Innovation Award in Teaching and Learning (Physics, Canada, 2017).  Dr Parappilly is the chair of Physics Education of Australian Institute of Physics (AIP). This year she joined the South Australian Women’s Honour Roll for 2017.


[1] Parappilly, Hassam & Woodman (2018). ‘Race to improve student understanding of uncertainty: Using LEGO® race cars in the physics lab’, American Journal of Physics, vol. 86, no. 1, pp. 68-76.

corporate culture

Smashing the glass ceiling

“Science Meets Business” – this is a beautiful thing. It does not get better than that for me, having trained as a scientist and worked for more than 30 years in business, including the past 27 years with Dow, one of the world’s leading science and technology companies.  At Dow we are proud of our mission to combine chemistry, physics and biology to create what is essential for human progress. As our ever growing population faces pressing challenges, we believe that innovation will be the key to addressing the needs of the future.

Implicit in this vision is that graduates in Science, Technology, Engineering and Mathematics (STEM) are readily available to drive innovation and progress humanity and, just as importantly, that the graduate pool reflects the diversity of our society in all its dimensions.

Over recent years, there has been an increasing recognition of the imbalance of women in STEM.  This has culminated in an impressive $13 million of the National Innovation and Science Agenda (NISA) funding being earmarked to support women in STEM careers including support for SAGE, Australia’s Science and Gender Equity initiative to promote gender equity in STEM.

Changing corporate culture

There is a real need for this concerted effort to address gender inequity. According to the Chief Scientist’s March 2016 report, women make up only 16% of Australia’s STEM Workforce.

The good news is that in recent years, a lot has been done to address the gender inequality issues.  We have a strong combination of social awareness, government policy and financial investment, corporate and business buy-in and social consciousness of the issue.

I have recently met a number of female board directors who have openly acknowledged that their appointment is due to the Victorian governments spilling of agency boards and establishing a 50% gender quota requirement. This is one example of real and substantial change.

Across the globe, Dow has over 1,600 employee volunteers, known as STEM Ambassadors, who are helping to bring STEM subjects to life in the classroom, and serving as role models of a diverse STEM workforce.

In partnership with the Women in Business Summit hosted by the American Chamber of Commerce in Japan (ACCJ), Dow has also taken a leadership role to improve STEM career development opportunities for women.  We are progressing slowly, but steadily, with women constituting nearly 60% of new Australian and New Zealand hires at Dow in 2016.

With the $13 million NISA investment and the changing corporate culture, now is the perfect opportunity for young women to seek and develop a career in STEM.

Innovation in general will be the driving force of commercial success, economic growth and national development. A large part of this will come from R&D and innovation in STEM fields.

If the majority of future jobs are yet to be imagined, then women in particular are in a perfect position to seize the opportunity of creating these positions.

The management glass ceiling might exist today, but if the jobs are yet to be invented, then then we have a chance of shattering that ceiling in the future.

Tony Frencham

Managing Director & Regional President, Australia and New Zealand, Dow Chemical Company

Read next: CEO of AECOM Australia and New Zealand Lara Poloni explains why it’s important for women to stay connected with the workplace during a career break.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on corporate culture using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.

radio telescope

Introducing the world’s largest radio telescope

Featured image: A computer generated image of the Square Kilometre Array (SKA) radio telescope dish antennas in South Africa. Credit: SKA Project Office.

What is dark matter? What did the universe look like when the first galaxies formed? Is there other life out there? These are just some of the mysteries that the Square Kilometre Array (SKA) will aim to solve.

Covering an area equivalent to around one million square metres, or one square kilometre, SKA will comprise of hundreds of thousands of radio antennas in the Karoo desert, South Africa and the Murchison region, Western Australia.

The multi-billion dollar array will be 10 times more sensitive and significantly faster at surveying galaxies than any current radio telescope.

The massive flow of data from the telescope will be processed by supercomputing facilities that have one trillion times the computing power of those that landed men on the Moon.

Phase 1 of SKA’s construction will commence in 2018. The construction will be a collaboration of 500 engineers from 20 different countries around the world.

– Gemma Conroy

supercomputer

Supercomputer empowers scientists

Creating commercial drugs these days seems to require more time at the keyboard than in the lab as these drugs can be designed on a computer long before any chemicals are combined.

Computer-based simulations test the design created by the theoretical chemist and quickly indicate any potential problems or enhancements.

This process generates data, and lots of it. So in order to provide University of Western Australia (UWA) chemistry researchers with the power to perform these big data simulations the university built its own supercomputer, Pople.

Dr Amir Karton, head of UWA’s computational chemistry lab says the supercomputer is named after Sir John Pople who was one of the pioneers of computational chemistry for which he won a Nobel Prize in 1998.

“We model very large systems ranging from enzymes to nano materials to design proteins, drugs and catalysts, using multi-scale theoretical procedures, and Pople was designed for such simulations,” Karton says.

“These simulations will tell you how other drugs will interact with your design and what modifications you will need to do to the drug to make it more effective.”

Pople was designed by UWA and while it is small compared to Magnus at the Pawsey Supercomputing Centre it gives the researchers exactly what they want.

That being a multi-core processor, a large and very fast local disk as well as 512 GB of memory in which to run the simulations.

Magnus’ power equivalent to 6 million iPads

While Magnus has nearly 36,000 processors—processing power equivalent to six million iPads running at once—Pople has just 2316 processors.

But, Magnus was designed with large computational projects like the Square Kilometre Array in mind whereas Pople provides such services to individual users.

Dr Dean Taylor, the faculty’s systems administrator says the total amount of memory available to Pople amounts to 7.8 TB, and the total amount of disk space is 153 TB, which could fill almost two thousand 80 GB Classic iPods.

By comparison a top-of-the-range gaming PC might have four processors, 16 GB of memory and a 2 TB disk drive.

A large portion of the Intel Xeon processors (1896 cores) were donated by Perth-based geoscience company DownUnder GeoSolutions.

DownUnder GeoSolutions’ managing director Dr Matthew Lamont says it is the company’s way of investing in the future.

Pople will also assist physics and biology research involving the nature of gravitational waves and the combustion processes that generate compounds important for seed germination.

– Chris Marr

This article was first published by ScienceNetwork Western Australia on 30 April 2016. Read the original article here.

Australia’s first nanoscience facility launched

Leading scientific figures, pioneers and representatives from key organisations internationally are visiting Sydney for today’s launch of the Australian Institute for Nanoscale Science and Technology (AINST) – and the official opening of its headquarters – the most advanced facility for nanoscience in the region – where design, fabrication and testing of devices can occur under one roof.

Officially opening the new $150 million Sydney Nanoscience Hub will be Australian Academy of Science’s President Andrew Holmes AM. Senior executives from Microsoft in the USA are also visiting to tour the building, and scientists speaking at the launch include one of Israel’s top physicists, Moti Segev – whose centre at the Technion is collaborating on a project with the University of Sydney and the NSW Government.

Nanoscience is expected to be more impactful this century than the industrial revolution in the 19th century. But “the buildings in which we work, rather than our imaginations, are what’s been limiting the science,” says Associate Professor Michael Biercuk, formerly a consultant to the US government organisation the Defense Advanced Research Projects Agency (DARPA) and now the research leader of a quantum flagship in AINST.

More than six years in the making, the award-winning Sydney Nanoscience Hub was co-funded with $40 million from the federal government, includes teaching spaces alongside publicly available core research facilities that will support  fundamental research as well as the work of startups and established industry.

AINST hosts some of the capabilities of the Australian National Fabrication Facility and of the Australian Microscopy and Microanalysis Research Facility – both co-funded by the National Collaborative Research Infrastructure Strategy (NCRIS). Researchers at the Institute contribute to two Australian Council Centres of Excellence:  the Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS); and the Centre for Engineered Quantum Systems (EQuS).

Professor Benjamin Eggleton, the Director of CUDOS who also heads the photonics flagship at AINST, says photonics (the study of photons – the building blocks of light) was already delivering real-world solutions: “Photonics is the backbone of the internet and underpins a $7 trillion industry,” Eggleton says.

“Our team has led the world in photonic-based chip processing and we are now working on building a photonic chip – or a lab on a chip – that may one day be compatible with mobile phones, enabling them to sense environmental pollution or be used for testing blood samples to diagnose health issues.”

Vice-Chancellor Dr Michael Spence says the University-wide AINST reached across traditional disciplinary boundaries.

“The Australian Institute for Nanoscale Science and Technology continues the University of Sydney’s tradition in addressing multidisciplinary issues in a unique way to ensure that we are ready to solve the great challenges of science, engineering and beyond,” he says.

AINST Director, Professor Thomas Maschmeyer, will also head one of five initiating flagships – in energy and environment – and this month announced an investment valued at $11 million from the United Kingdom into a university nano spin-off.

“There is little doubt that society must progressively transition to non-fossil-based energy,” Maschmeyer says.

Professor David Reilly, research leader of the AINST’s quantum measurement and control flagship, says breakthroughs at the nanoscale hold the key to major advances in areas such as artificial intelligence and security.

“The challenge for us over the next few years is to take the physics results that we have probing the basic phenomena of quantum mechanics and see those results turn into technologies.”

Director of the Sydney Nanoscience Hub building Professor Simon Ringer says new science would be enabled through this purpose-built facility for nanoscience – the first in Australia.

“This is the best building of its kind in our region. It will allow us to operate research instruments that enable us to ask questions at the frontiers of science.”

AINST Director of Community and Research, Professor Zdenka Kuncic says the ‘rules of the game’ in nanoscience were still being worked out.

“Perhaps the most exciting aspect of nanoscience is the potential for new discoveries, including in health and medicine,” she says.

“We have only scratched the surface of the new knowledge that remains to be revealed.”

This article was first published by The University of Sydney on 20 April 2016. Read the original article here.

Gravity waves hello

Gravity waves hello

Featured image above credit: NASA/C. Henze

For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.

Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.

The gravitational waves were detected by twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Louisiana and Washington in the USA. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) and the GEO600 Collaboration) and the Virgo Collaboration.

Australian scientists from The Australian National University (ANU), the University of Adelaide, The University of Melbourne, the University of Western Australia (UWA), Monash University and Charles Sturt University (CSU), contributed to the discovery and helped build some of the super-sensitive instruments used to detect the gravitational waves.

Leader of the Australian Partnership in Advanced LIGO Professor David McClelland from ANU, says the observation would open up new fields of research to help scientists better understand the universe.

“The collision of the two black holes was the most violent event ever recorded,” McClelland says.

“To detect it, we have built the largest experiment ever – two detectors 4000 km apart with the most sensitive equipment ever made, which has detected the smallest signal ever measured.”

Associate Professor Peter Veitch from University of Adelaide says the discovery was the culmination of decades of research and development in Australia and internationally.

“The Advanced LIGO detectors are a technological triumph and the discovery has provided undeniable proof that Einstein’s gravitational waves and black holes exist,” Veitch says.

“I have spent 35 years working towards this detection and the success is very sweet.”

Professor David Blair from UWA says the black hole collision detected by LIGO was invisible to all previous telescopes, despite being the most violent event ever measured.

“Gravitational waves are akin to sound waves that travelled through space at the speed of light,” Blair says.

“Up to now humanity has been deaf to the universe. Suddenly we know how to listen. The universe has spoken and we have understood.”

With its first discovery, LIGO is already changing how astronomers view the universe, says LIGO researcher Dr Eric Thrane from Monash University.

“The discovery of this gravitational wave suggests that merging black holes are heavier and more numerous than many researchers previously believed,” Thrane says.

“This bodes well for detection of large populations of distant black holes research carried out by our team at Monash University. It will be intriguing to see what other sources of gravitational waves are out there, waiting to be discovered.”

The success of LIGO promised a new epoch of discovery, says Professor Andrew Melatos, from The University of Melbourne.

“Humanity is at the start of something profound. Gravitational waves let us peer right into the heart of some of the most extreme environments in the Universe, like black holes and neutron stars, to do fundamental physics experiments under conditions that can never be copied in a lab on Earth,” Melatos says.

“It is very exciting to think that we now have a new and powerful tool at our disposal to unlock the secrets of all this beautiful physics.”

Dr Philip Charlton from CSU says the discovery opened a new window on the universe.

“In the same way that radio astronomy led to the discovery of the cosmic microwave background, the ability to ‘see’ in the gravitational wave spectrum will likely to lead to unexpected discoveries,” he says.

Professor Susan Scott, who studies General Relativity at ANU, says observing this black hole merger was an important test for Einstein’s theory.

“It has passed with flying colours its first test in the strong gravity regime which is a major triumph.”

“We now have at our disposal a tool to probe much further back into the Universe than is possible with light, to its earliest epoch.”

Australian technology used in the discovery has already spun off into a number of commercial applications. For example, development of the test and measurement system MOKU:Lab by Liquid Instruments; vibration isolation for airborne gravimeters for geophysical exploration; high power lasers for remote mapping of wind-fields, and for airborne searches for methane leaks in gas pipelines.

This information was first shared by Monash University on 12 February 2016. Read their news story here