Tag Archives: gravitational waves

top stories

Top stories of the year

Featured image above: AI progress makes history – #2 of the top stories in STEM from 2016.

1. New way to cut up DNA

On October 28, a team of Chinese scientists made history when they injected the first adult human with cells genetically modified via CRISPR, a low-cost DNA editing mechanism.

Part of a clinical trial to treat lung cancer, this application of CRISPR is expected to be the first of many in the global fight against poor health and disease. 

2. AI reads scientific papers, distils findings, plays Go

Artificially intelligent systems soared to new heights in 2016, taking it to number 2 on our list of top stories. A company called Iris created a new AI system able to read scientific papers, understand their core concepts and find other papers offering relevant information.

In the gaming arena, Google’s DeepMind AlphaGo program became the first AI system to beat world champion, Lee Se-dol, at the boardgame Go. Invented in China, Go is thought to be at least 2,500 years old. It offers so many potential moves that until this year, human intuition was able to prevail over the computing power of technology in calculating winning strategies. 

3. Scientists find the missing link in evolution

For a long time, the mechanism by which organisms evolved from single cells to multicellular entities remained a mystery. This year, researches pinpointed a molecule called GK-PID, which underwent a critical mutation some 800 million years ago.

With this single mutation, GK-PID gained the ability to string chromosomes together in a way that allowed cells to divide without becoming cancerous – a fundamental enabler for the evolution of all modern life. GK-PID remains vital to successful tissue growth in animals today. 

4. Data can be stored for 13.8 billion years

All technology is subject to degradation from environmental influences, including heat. This means that until recently, humans have been without any form of truly long-term data storage.  

Scientists from the University of Southampton made the top stories of 2016 when they developed a disc that can theoretically survive for longer than the universe has been in existence. Made of nano-structured glass, with the capacity to hold 360TB of data, and stable up to 1,000°C, the disc could survive for over 13.8 billion years. 

5. Mass coral bleaching of the Great Barrier Reef

The most severe bleaching ever recorded on the Great Barrier Reef occurred this year. Heavy loss of coral occurred across a 700km stretch of the northern reef, which had previously been the most pristine area of the 2300km world heritage site.

North of Port Douglas, an average of 67% of shallow-water corals became bleached in 2016. Scientists blame sea temperature rise, which was sharpest in the early months of the year, and which resulted in a devastating loss of algae that corals rely on for food. 

6. Climate protocol ratified – but Stephen hawking warns it may be too late

On the 4 November 2016, the Paris Agreement became effective. An international initiative to reduce greenhouse gas emissions and control climate change, the Paris Agreement required ratification by at least 55 countries representing 55% of global emissions in order to become operational.

So far 117 countries have joined the cause, with Australia among them. But some of the world’s greatest minds, including Stephen Hawking, believe time is running out if the human race is to preserve its planet. 

7. Young people kick some serious science goals

A group of high schoolers from Sydney Grammar succeeded in recreating a vital drug used to treat deadly parasites, for a fraction of the market price.

The drug, known as Daraprim, has been available for 63 years and is used in the treatment of malaria and HIV. There was public outcry in September when Turing Pharmaceuticals raised the price of the drug from US$13.50 to US$750. 

In collaboration with the University of Sydney and the Open Source Malaria Consortium, a year 11 class at Sydney Grammar created the drug at a cost of only $2 per dose, and made their work freely available online.

8. Gravitational waves detected

Albert Einstein’s general theory of relativity was confirmed in February, when scientists observed gravitational waves making ripples in space and time. 

Gravitational waves are thought to occur when two black holes merge into a single, much larger, black hole. They carry important information about their origins, and about gravity, that helps physicists better understand the universe. 

The gravitational waves were observed by twin Laser Interferometer Gravitational-wave Observatory detectors in Louisiana and Washington. Australian scientists helped to build some of the instruments used in their detection.

9. Moving away from chemotherapy

Researchers at the University College London made a leap forward in cancer treatment when they found a way to identify cancer markers present across all cells that have grown and mutated from a primary tumour. They also succeeded in identifying immune cells able to recognise these markers and destroy the cancerous cells. 

This breakthrough opens the door not only for better immuno-oncology treatments to replace the toxic drugs involved in chemotherapy, but also for the development of personalised treatments that are more effective for each individual.

10. New prime number discovered

The seventh largest prime number ever found was discovered in November. Over 9.3 million digits long, the number 10223*231172165+1 was identified by researchers who borrowed the computer power of thousands of collaborators around the world to search through possibilities, via a platform called PrimeGrid. 

This discovery also takes mathematicians one step closer to solving the Sierpinski problem, which asks for the smallest, positive, odd number ‘k’ in the formula k x 2n + 1, where all components of the formula are non-prime numbers. After the discovery of the newest prime number, only five possibilities for the Sierpinski number remain.

– Heather Catchpole & Elise Roberts

If you enjoyed this article on the top stories of the year, you might also enjoy:

Gravity waves hello

Have a story we missed? Contact us to let us know your picks of the top stories in STEM in 2016.

Gravity waves hello

Gravity waves hello

Featured image above credit: NASA/C. Henze

For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.

Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.

The gravitational waves were detected by twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Louisiana and Washington in the USA. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) and the GEO600 Collaboration) and the Virgo Collaboration.

Australian scientists from The Australian National University (ANU), the University of Adelaide, The University of Melbourne, the University of Western Australia (UWA), Monash University and Charles Sturt University (CSU), contributed to the discovery and helped build some of the super-sensitive instruments used to detect the gravitational waves.

Leader of the Australian Partnership in Advanced LIGO Professor David McClelland from ANU, says the observation would open up new fields of research to help scientists better understand the universe.

“The collision of the two black holes was the most violent event ever recorded,” McClelland says.

“To detect it, we have built the largest experiment ever – two detectors 4000 km apart with the most sensitive equipment ever made, which has detected the smallest signal ever measured.”

Associate Professor Peter Veitch from University of Adelaide says the discovery was the culmination of decades of research and development in Australia and internationally.

“The Advanced LIGO detectors are a technological triumph and the discovery has provided undeniable proof that Einstein’s gravitational waves and black holes exist,” Veitch says.

“I have spent 35 years working towards this detection and the success is very sweet.”

Professor David Blair from UWA says the black hole collision detected by LIGO was invisible to all previous telescopes, despite being the most violent event ever measured.

“Gravitational waves are akin to sound waves that travelled through space at the speed of light,” Blair says.

“Up to now humanity has been deaf to the universe. Suddenly we know how to listen. The universe has spoken and we have understood.”

With its first discovery, LIGO is already changing how astronomers view the universe, says LIGO researcher Dr Eric Thrane from Monash University.

“The discovery of this gravitational wave suggests that merging black holes are heavier and more numerous than many researchers previously believed,” Thrane says.

“This bodes well for detection of large populations of distant black holes research carried out by our team at Monash University. It will be intriguing to see what other sources of gravitational waves are out there, waiting to be discovered.”

The success of LIGO promised a new epoch of discovery, says Professor Andrew Melatos, from The University of Melbourne.

“Humanity is at the start of something profound. Gravitational waves let us peer right into the heart of some of the most extreme environments in the Universe, like black holes and neutron stars, to do fundamental physics experiments under conditions that can never be copied in a lab on Earth,” Melatos says.

“It is very exciting to think that we now have a new and powerful tool at our disposal to unlock the secrets of all this beautiful physics.”

Dr Philip Charlton from CSU says the discovery opened a new window on the universe.

“In the same way that radio astronomy led to the discovery of the cosmic microwave background, the ability to ‘see’ in the gravitational wave spectrum will likely to lead to unexpected discoveries,” he says.

Professor Susan Scott, who studies General Relativity at ANU, says observing this black hole merger was an important test for Einstein’s theory.

“It has passed with flying colours its first test in the strong gravity regime which is a major triumph.”

“We now have at our disposal a tool to probe much further back into the Universe than is possible with light, to its earliest epoch.”

Australian technology used in the discovery has already spun off into a number of commercial applications. For example, development of the test and measurement system MOKU:Lab by Liquid Instruments; vibration isolation for airborne gravimeters for geophysical exploration; high power lasers for remote mapping of wind-fields, and for airborne searches for methane leaks in gas pipelines.

This information was first shared by Monash University on 12 February 2016. Read their news story here