Tag Archives: National Health and Medical Research Council

Australian research funding

Australian research funding infographic

Featured image above: CSIRO has received significant budget cuts in recent years. Credit: David McClenaghan

The election is rapidly approaching, and all major parties – Liberal, Labor and Greens – have now made announcements about their policies to support science and research.

But how are we doing so far? Here we look at the state of science and research funding in Australia so you can better appreciate the policies each party has announced.

The latest OECD figures show that Australia does not fare well compared with other OECD countries on federal government funding research and development.

As a percentage of GDP, the government only spends 0.4% on research and development. This is less than comparable nations.

CC BY-ND

But looking at total country spending on research and development, including funding by state governments and the private sector, the picture is not so bleak: here Australia sits in the middle among OECD countries.

CC BY-ND

Over the years, there have been hundreds of announcements and new initiatives but this graph indicates that, in general, it has been a matter of rearranging the deck chairs rather than committing to strategic investments in research.

The Paul Keating Labor government made some investments. During the John Howard Liberal government’s years, there were ups and downs. The Kevin Rudd/Julia Gillard Labor governments were mostly up. And in Tony Abbott’s Liberal government, the graph suggests that it was mostly down with science.

CC BY-ND

Over the past decade, there have been some minor changes in funding to various areas, although energy has received the greatest proportional increase.

CC BY-SA

This pie chart reminds us that the higher education sector is a major provider of research and is highly dependent on government funding. It also tells us that business also conducts a great deal of research.

CC BY-ND

The timeline below shows that the government does listen and respond when issues arise. It has recognised the importance of the National Collaborative Research Infrastructure Scheme (NCRIS), the Australian Synchrotron and sustainable medical research funding by different initiatives.

But, sadly, one must remember that funding is effectively being shifted from one domain to another, and it has seldom been the case that significantly new commitments are made. The balance of red and blue shows how one hand gives while the other takes funding away.

CC BY-SA

This useful graph highlights the fact that Australian Research Council (ARC) funding now amounts to little more than the National Health and Medical Research Council’s funding.

This is remarkable, given that the ARC funds all disciplines, including sciences, humanities and social sciences, while the NHMRC essentially focuses on human biology and health.

CC BY-SA

This graphic also highlights the lack of any sustained funding strategy. The only clear trend is that the investment in the ARC has gradually declined and the NHMRC has grown.

This, in part, reflects the undeniable importance of health research. But it is also indicative of effective and coherent organisation and communication by health researchers. This has been more difficult to achieve in the ARC space with researchers coming from a vast array of disciplines.

– Merlin Crossley, Deputy Vice-Chancellor Education and Professor of Molecular Biology, UNSW Australia
– Les Field, Secretary for Science Policy at the Australian Academy of Science, and Senior Deputy Vice-Chancellor, UNSW Australia
This article was first published by The Conversation on June 22 2016. Read the original article here.
3D bioprinting

A 3D printed smile

Featured image above: Professor Saso Ivanovski. Credit: Griffith University

The discomfort and stigma of loose or missing teeth could be a thing of the past as Griffith University researchers pioneer the use of 3D bioprinting to replace missing teeth and bone.

The three-year study, which has been granted a National Health and Medical Research Council Grant of $650,000, is being undertaken by periodontist Professor Saso Ivanovski from Griffith’s Menzies Health Institute Queensland.

As part of an Australian first, Ivanovski and his team are using the latest 3D bioprinting to produce new, totally ‘bespoke’, tissue-engineered bone and gum that can be implanted into a patient’s jawbone.

“The groundbreaking approach begins with a scan of the affected jaw, prior to the design of a replacement part using computer-assisted design,” he says.

“A specialised bioprinter, which is set at the correct physiological temperature (in order to avoid destroying cells and proteins) is then able to successfully fabricate the gum structures that have been lost to disease – bone, ligament and tooth cementum – in one single process. The cells, the extracellular matrix and other components that make up the bone and gum tissue are all included in the construct and can be manufactured to exactly fit the missing bone and gum for a particular individual.

“In the case of people with missing teeth who have lost a lot of jawbone due to disease or trauma, they would usually have these replaced with dental implants,” he says.

“However, in many cases there is not enough bone for dental implant placement, and bone grafts are usually taken from another part of the body, usually their jaw, but occasionally it has to be obtained from their hip or skull.

“These procedures are often associated with significant pain, nerve damage and postoperative swelling, as well as extended time off work for the patient,” says Ivanovski. “In addition, this bone is limited in quantity.”

A less invasive method

“By using this sophisticated tissue engineering approach, we can instigate a much less invasive method of bone replacement,” says Ivanovski.

“A big benefit for the patient is that the risks of complications using this method will be significantly lower because bone doesn’t need to be removed from elsewhere in the body. We also won’t have the problem of limited supply that we have when using the patient’s own bone.”

Currently in pre-clinical trials, Ivanovski says the aim is to trial the new technology in humans within the next one to two years.

Regarding the anticipated cost of treatment, he says that this should be a less costly way of augmenting deficient jaw bone, with the savings expected to be passed onto the patient.

– Louise Durack

This article was first published by Griffith University on 30 March 2016. Read the original article here.