For each company, the panel considered total market value, annual turnover, patents awarded and cited, funding and investment, growth year-on-year, social value, overseas expansion and major partnerships.
“As we understood more about the market, we believed our product was most differentiated and better suited to very large enterprise customers.
But understandably, such large customers are not inclined to buy off an unproven, unknown start-up. So we spent a lot of time trialling our product with smaller early adopters and leveraging the results to win over increasingly bigger customers.“
“In the biotechnology/pharmaceutical space the major challenge that is often outside our control is the time taken to get the regulatory and pricing approvals necessary to enter markets where the only purchasers are governments.
We faced significant delays and hold-ups that required a different set of competencies to tackle than the scientific and clinical experience that had got us to that point.
Your business model has to be robust enough to withstand delays in time to market and increasing regulatory costs. Having a plan that only works if everything goes well is asking for trouble.“
“An ongoing challenge when moving into new markets is educating the value of the technology based on experiences in other regions, and trying to keep down the cost of individual sales with a complex technology.
We’ve alleviated this challenge with staff based around the world and by setting up established offices in Chicago (USA) and Leeds (UK), but you still need to get creative in penetrating new markets and generating revenue right away while demonstrating value.“
“With two platform technologies and an extensive number of possible R&D programs, determining the right projects to progress forward and balancing capital allocation are key. Detailed program and market understanding is also essential.
We’ve overcome this by maintaining regular and consistent communication with our investors and working closely with our customers to understand their needs.“
“The most difficult challenge ended up being establishing the right management team for the business – it is difficult to identify and parachute in the skilled, motivated management team a start-up needs; one that is able to operate effectively with researchers, investors, and so on.
For this to happen, CRCMining, as the major shareholder, first ensured the company had an independent governance arrangement in place by establishing a board for SmartCap with significant successful commercial experience – one that we felt was very competent, able to ask hard questions, and make difficult decisions.
The board led the process of putting in place a management team that has resulted in the company reaching the point of being a very well-run organisation.“
“We chose to partner our lead product with a strong international pharmaceutical company rather than working through alternative go-to-market strategies. On that basis, selecting and negotiating a good commercial deal is critical.
Not all partners are created equal. On that basis, there are other challenges prior to this step that must be appropriately addressed.
The quality of the commercialisation partner and the strength of your position in a negotiation with that partner are the result of good outcomes in the pivotal steps prior to your licensing negotiations.”
“Once clinical proof-of-concept was successfully announced by Spinifex in August 2012– that is, the Phase 2a clinical trial in patients with postherpetic neuralgia, which is a type of peripheral neuropathic pain that is often intractable – the Spinifex Board again needed to raise capital to progress from Phase 2a to Phase 2b clinical trials.
However, these funds were not available in Australia and so the company had to move to the USA in early 2014. Soon after, they successfully raised $45M in the USA to progress the clinical development program.”
– Professor Maree Smith, Executive Director of the Centre for Integrated Preclinical Drug Development and Head of the Pain Research Group at The University of Queensland
There are two potential ‘valleys of death’ for R&D spin-off companies. One is in translating their research concepts into prototype products. The other is in maturing from prototype to full commercialisation.
“Taking the prototype through to full commercialisation was probably more difficult for us due to the complexities involved.
This included high-tech scale-up manufacturing, which we do at our bio-manufacturing facility in Malaga. Today, we have the ability to expand production as necessary, as well as refine and develop our processes in-house to accommodate new products and product improvements.
There was also a focus on generating sales once CardioCel was commercialised. Just because a product is approved doesn’t necessarily mean that it will be used straight away by the intended customers.
We’ve focused on educating the market about the benefits of CardioCel, such as its biocompatibility and lack of calcification (hardening) at the site of surgery. We’ve also built a strong global sales and marketing team who work closely with our customers to understand their needs.
As a result, we’ve seen continued quarter-on-quarter growth in CardioCel sales, and the product is now used in over 135 heart centres globally.“
“For pharmaceuticals the so called ‘second valley of death’ is by far the most significant.
Lack of funding often prevents companies from attempting to cross this valley and causes them to license their technology at an earlier stage and to realise rewards as the licensor takes their innovation to market.
For a small company with limited resources, the key to success here is to understand the commercialisation risks, link the higher-risk projects with partners and try to make that step themselves for markets with lower entry costs and higher clinical need.
If done well, they should end up with a portfolio approach with the risks mitigated but still significant opportunity for value appreciation.”
“SmartCap Technologies had substantial industry support to develop the prototype products, however even with this it was a very challenging process to deliver working prototypes.
SmartCap was exceedingly fortunate in that CRCMining provided substantially more financial support for SmartCap than originally envisaged, enabling it to finally deploy the prototype products. Those prototypes were sufficiently effective to generate commercial interest from some large mining companies.
So despite having robust plans in place, it always helps to have access to further funding, via investors or other stakeholders with a high level of commitment as well as deep pockets, to overcome unforeseen eventualities.”
“The biggest hurdle may be the combination of the two – translating research concepts (i.e. technical information associated with the technology) following commercialisation into an immature market.
Catapult‘s technology is not a consumer product and therefore is very high touch in terms of its service and client support. Due to the perceived complexity of the information obtained from the technology, part of the trick is to simplify the underlying research concepts to new markets that need a low touch product.”
“I would argue that you should have a prototype – before any spin-off. That way you can at least prove technical viability of your concept. Ideally you would also have done some level of customer validation.
The next step of full commercialisation is definitely the hardest.
In our case it was a matter of finding early customers that were willing to spend time assessing the product and its benefits – even though it was too early to commit to a purchase and full roll-out. This phase was key to understanding the market and adjusting our path.”
“The first phase is the most difficult – a poor prototype will show its deficiencies later in development. A prototype needs to demonstrate a safe and efficacious profile, and that it will meet the need you have defined in the target market.”
“Translating research concepts into clinical proof-of-concept [was the most difficult] due to the dearth of venture capital available in Australia at that time.”
– Professor Maree Smith, Executive Director of the Centre for Integrated Preclinical Drug Development and Head of the Pain Research Group at The University of Queensland
“We are in the middle of our valley of death translating our platform into the clinic and we have not yet overcome it. Data is key, but one needs the funds to produce the results! So, we are seeking investors wherever we can find them and buddying up to big pharmaceuticals who have the muscle to progress our technology.”
– Dr Jennifer Macdiarmid, pictured above with Dr. Himanshu Brahmbhatt, joint Chief Executive Officers and Directors
Some argue that Australian start-ups are more vulnerable to the “valley of death” than businesses in other countries, with only 3.2% becoming high-growth companies.
Here, leaders of the Top 25 Science Meets Business R&D spin-off companies answer the question: What lessons have you taken from R&D spin-offs in overseas markets as to how to navigate the difficult journey from prototype to commercial product?
“A key point here is that the journey from prototype to commercial product is much more difficult if you’re trying to penetrate overseas markets at the same time.
When Catapult became a commercial product in 2006, the company’s focus was on the Australian market – specifically Australian football.
Within a couple years the technology reached saturation point in the Australian Football League (AFL), the product was stable and developed based on local feedback, and then we started to attempt a new market in the United Kingdom through a local distributor.”
“Firstly, I don’t think it makes sense to classify all start-ups as being the same, in my view it depends on the attitudes of the early markets a particular start-up is targeting.
CRCMining carries out research primarily into new technologies and mining equipment, which would be used within the mining sector. Australia has traditionally been an early adopter of new mining technologies, and the mining industry generally recognises the importance of innovation and is supportive of the development of new technologies. This assists tremendously in mining technology companies successfully negotiating the valley of death.
Mining is, however, a relatively small, niche market for new technologies, so mining technology start-up companies do need to have a plan to become global providers very rapidly.
Secondly, I believe there are a number of factors that need to be solved adequately for a spin-off to have a chance of being successful:
Is there a viable, readily accessible market that is sufficiently large to support a spin-off company?
Is there innovation capability within the spin-off – in particular, do the inventors want to transfer to the spin-off?
Is there competent management and sales capability to direct the business, and generate revenue for the company? (Typically different from the researchers.)
Is there appropriate funding available to get the company through to a viable revenue stream?
If all of the above can be answered appropriately, then a spin-off has a good chance of getting through to the commercial product phase and becoming an operating business.”
“Developing new pharmaceutical products is a very long process that requires access to a lot of capital.
I observe in the USA, and to a lesser extent in Europe and Asia, that R&D spin-offs tend to have access to greater amounts of venture capital (VC), allowing them to get to clinical proof of concept before undertaking an initial public offering (IPO). The IPO then tends to be substantial and provides the necessary cash to get all the way to the market.
In Australia it is difficult to get enough VC funding to reach proof of concept, so companies are often forced to IPO prematurely and for much smaller amounts.
At Pharmaxis, we are actively looking for opportunities in Australia that haven’t yet reached proof of concept, where we can provide alternatives to an early IPO by collaborating and incubating the technology to a significant value step.“
“It is very difficult to take too many lessons from overseas since, for example, investors in the USA would invest enough money to allow you to be a high-growth company; even getting from concept to clinic. Many European countries like Denmark also invest heavily in start-ups.
None of this applies to Australia since we neither have a deep and knowledgeable biotechnology investment community, nor successive governments which advocate evolution from start-up to high-growth company.
While there were some government investment programs in years past, they have only applied to early-stage companies, and biotechnology takes a long time.”
– Dr Jennifer Macdiarmid, pictured above with Dr. Himanshu Brahmbhatt, joint Chief Executive Officers and Directors
“Making sure the product that is developed suits the market that is available. Ensuring the target market is the best for new technology and has a compelling business case to current incumbents.”
“You need to develop a strong strategy. This involves mitigating inevitable risks through solid and rigorous planning. Developing a well-defined target product profile is key as this will guide your planning and risk mitigation strategies.”
“In overseas markets such as the USA, the scale of Series A capital is about tenfold higher than it is in Australia and the venture capital firms making these Series A investments typically have very large funds at their disposal. Hence, these firms have the capital needed to make subsequent Series B and C investments for progressing from prototype to commercial product.”
– Professor Maree Smith, Executive Director of the Centre for Integrated Preclinical Drug Development and Head of the Pain Research Group at The University of Queensland
“A key point for any new venture is to prove there is a market for the product. So we focused on getting product into customers hands as soon as possible.”
All research and development (R&D) spin-offs have significant risk attached to their commercialisation, but some cannot overcome the negative perception of that risk to attract the necessary capital.
Here, nine of the Top 25 Science meets Business R&D spin-off companies explain what it was about their product or business strategy that inspired confidence in their investors that theirs would be a viable business venture.
“An excellent intellectual property position is a key starting point. This is in addition to having a proven concept or great technology. A quality team to back up project execution is paramount. Understanding and being able to explain where your commercialised projects will fit into a market segment in terms of the need they will meet is also important.”
“SmartCap Technologies is a spinoff from CRCMining. CRCMining carries out industry directed research, which ensured that the research into fatigue management technologies was a high priority for the mining industry at the project’s inception.
In SmartCap’s case, the industry support was sufficiently high that Anglo American, one of the world’s largest mining companies, in conjunction with CRCMining, co-funded the development of the prototype commercial SmartCap products.
This ‘incubation’ of the SmartCap technology by a significant end user was extremely important to advancing from research into prototype products.
The prototype products performed sufficiently well for SmartCap to be selected by two other large mining companies for large supply contracts for fatigue monitoring technology.
So the support of significant end users, along with the commercial contracts the company had in place at that time, provided potential investors with the confidence to invest in SmartCap Technologies.”
“Pharmaxis has been restructured following a regulatory setback for our lead product. Rebuilding investor confidence has been critical to our longer term success. To do this we focused on three things:
1. transparency – explaining the business model and being clear about the risks as well as the opportunity;
2. building in meaningful milestones which marked development steps that significantly reduced risk and provided opportunities to realise value;
3. hitting milestones and delivering realistic objectives.”
“I think there are a number of reasons investors are drawn to our business: Admedus has two technology platforms which diversifies the risk for investors; we have a product on market; and we are generating revenue.
The first of the two platforms is our regenerative tissue platform, where we use our proprietary ADAPT tissue engineering process to turn xenograft tissue into collagen bio-scaffolds for soft tissue repair. The second is our Immunotherapies platform, where we work with renowned scientist Professor Ian Frazer and his team to develop therapeutic vaccines for the treatment and prevention of infectious diseases and cancers.
Our lead regenerative tissue product CardioCel, which is used to repair and reconstruct congenital heart deformities and more complex heart defects, has made the journey from prototype to commercial product and is on the market in the USA, Europe and parts of Asia.
Frazer’s previous success with the human papillomavirus vaccine (HPV) program that lead to the USD$2 billion product, Gardasil, is well-recognised and gives investors further confidence in our immunotherapy work.
As a result, Admedus has a good balance of validated science via approved products and an exciting product pipeline working with successful scientists. This balance, along with our diversified program portfolio, gives investors confidence in our business. “
Because the technology was engineered to take elite athlete monitoring from the laboratory to the field, value was seen in the data immediately as there was no precedent for this type of information. A new product category had been formed and Australian Olympians were now able to train in their performance sweet spot without getting injured because their coaches had objective data to guide their lead up to big events.
So this combination of pioneering a new industry in a popular space (elite sport), with the ability to create immediate value, certainly helped with the initial funding.”
“Neuropathic pain is a large unmet medical need because the currently available drug treatments either lack efficacy and/or have dose-limiting side-effects.
Due to this, my patent-protected angiotensin II type 2 (AT2) receptor antagonist technology – encompassing a potentially first-in-class novel analgesic for the treatment of often intractable neuropathic pain conditions – attracted initial seed capital investment from the Symbiosis Group, GBS Ventures and Uniseed Pty Ltd. In total $3.25M was raised and in mid-2005 the spin-out company, Spinifex Pharmaceuticals was formed by UniQuest Pty Ltd, the main commercialisation company of The University of Queensland.
The raison d’etre for Spinifex Pharmaceuticals at that time was to develop AT2 receptor antagonists as efficacious, well-tolerated first-in-class novel analgesics for relief of neuropathic pain.
In 2006, I discovered that AT2 receptor antagonists also alleviated chronic inflammatory pain in a rat model. This was quite unexpected as clinically available drug treatments for neuropathic pain, such as tricyclic antidepressants and newer work-alikes as well as gabapentin and pregabalin, do not alleviate chronic inflammatory pain conditions such as osteoarthritis. Thus the potential for small molecule AT2 receptor antagonists to alleviate chronic inflammatory pain conditions was patent protected by UniQuest Pty Ltd in 2006 and subsequently in-licensed to Spinifex Pharmaceuticals for commercialisation.
As both neuropathic pain and chronic inflammatory pain are large unmet medical needs, Spinifex Pharmaceuticals was able to raise additional venture capital from the initial investors as well as from Brandon Capital to fund Investigational New Drug (IND)-enabling Good Laboratory Practice (GLP) toxicology and safety pharmacology studies, as well as early phase human clinical trials. “
– Professor Maree Smith, Executive Director of the Centre for Integrated Preclinical Drug Development and Head of the Pain Research Group at The University of Queensland
“Investors understood that the intellectual property would be generated in-house and there was no “stacking” from the beginning.
We were fortunate at the outset to meet two venture capitalists and a number of high net worth individuals who saw the potential upside in our business plan, had already had some success with investing in biotech – e.g. Biota – and did not ask ‘who else is in?’.
That being said, we had very limited time and money to show proof of concept, and only after that and our first patent, did we convince those investors that we had something viable.”
– Dr Jennifer Macdiarmid, pictured above with Dr. Himanshu Brahmbhatt, joint Chief Executive Officers and Directors
For a country that makes up just 0.3% of the world’s population, Australia packs a heavyweight punch in science – generating 3.9% of the world’s research publications. However taking that research to market has proved a broader challenge.
Fostering the commercialisation of research success and encouraging collaboration between industry and researchers is at the forefront of the government’s renewed focus on scientific innovation, with over $1.1 billion earmarked to kickstart the “ideas boom” as part of the National Innovation and Science Agenda.
“Collaboration is key to turning Australian ideas into viable and lucrative commercial products and services,” says Christopher Pyne, Minister for Industry, Innovation and Science, adding that high-tech knowhow plus innovative R&D will drive jobs and wealth in the future.
“We must capitalise on the opportunities that are presenting themselves in the economic transition taking place in Australia by being agile, innovative and creative,” Pyne says.
Fibrotech develops novel drug candidates to treat fibrosis (tissue scarring) associated with chronic conditions such as heart failure, kidney and pulmonary disease, and arthritis. The company spun out of research by Professor Darren Kelly at the University of Melbourne in 2006, and its principal asset is a molecule, FT011, which helps prevent kidney fibrosis associated with diabetes. In May 2014, in one of Australia’s biggest biotech deals at the time, Fibrotech was acquired by Shire, a Dublin-based pharmaceutical company, for an initial payment of US$75 million. Further payments, based on a series of milestones, will bring the total value of the sale to US$557.5 million, and the deal was awarded Australia’s best early stage venture capital deal in 2014. At the time of the sale, FT011 was in Phase 1b trials for the treatment of renal impairment in diabetics – a market worth US$4 billion annually.
*Innovation ratio = patents published/cited
Founder, CEO & director of Fibrotech Therapeutics, Professor Darren Kelly
SOLD FOR:acquired by Novartis for US$200 million up-front payment plus milestone payments
Spinifex Pharmaceuticals was launched in 2005 to commercialise chronic pain treatments developed by Professor Maree Smith of The University of Queensland. Pharmaceuticals giant Novartis acquired the company in 2015 for a total of US$725 million, based on the promising results in Phase 1b and Phase 2 clinical trials. Spinifex’s treatment targets nerve receptors on peripheral nerves rather than pain receptors in the brain, making it possible to treat the pain from causes such as shingles, chemotherapy, diabetes and osteoarthritis without central nervous system side-effects such as tiredness and dizziness.
CEO/President of Spinifex Pharmaceuticals, Dr Tom McCarthy
Admedus is a diversified healthcare company with interests in vaccines, regenerative medicine, and the sale and distribution of medical devices and consumables. Currently, the company is developing vaccines for herpes simplex virus and human papillomavirus based on Professor Ian Frazer’s groundbreaking vaccine technology. In the regenerative medicine field, Admedus is the vendor of CardioCel®, an innovative single-ply bio-scaffold that can be used in the treatment of congenital heart deformities and complex heart defects.
For more than 25 years, ResMed has been a pioneer in the treatment of sleep-disordered breathing, obstructive pulmonary disease and other chronic diseases. The company was founded in 1989 after Professor Colin Sullivan and University of Sydney colleagues developed nasal continuous positive airway pressure – the first successful, non-invasive treatment for obstructive sleep apnoea. Today, the company employs more than 4000 people in over 100 countries, delivering treatment to millions of people worldwide.
BioDiem specialises in the development and commercialisation of vaccines and therapies to treat infectious diseases. The Live Attenuated Influenza Virus vaccine technology provides a platform for developing vaccines, including one for both seasonal and pandemic influenza. BioDiem’s subsidiary, Opal Biosciences, is developing BDM-I, a compound that offers a possible avenue for the treatment of infectious diseases that resist all known drugs.
Vaxxas is pioneering a needle-free vaccine delivery system, the Nanopatch, which delivers vaccines to the abundant immunological cells just under the skin’s surface. Preclinical studies have shown that vaccines are effective with as little as one-hundredth of a conventional dose when delivered via a Nanopatch. In 2014, Vaxxas was selected by the World Economic Forum as a Technology Pioneer, based on the potential of Nanopatch to transform global health.
Biotech company Acrux was incorporated in 1998 after researchers at Monash University developed an effective new spray-on drug delivery technology that improved absorption through the skin and nails. In 2010, Acrux struck a US$335 million deal with global pharmaceutical company Eli Lilly for AxironTM, a treatment for testosterone deficiency in men. It was the largest single product licensing agreement in the history of Australian biotechnology.
Listed on the ASX in 2003, Pharmaxis has two products on the market: Bronchitol, a treatment for cystic fibrosis; and Aridol, a lung function test to diagnose and assess asthma. In 2015, Pharmaxis sold the rights to a treatment for the liver condition nonalcoholic steatohepatitis, to Boehringer Ingelheim in a deal that could be worth US$750 million.
With a focus on ophthalmology, Opthea’s main product is OPT-302 – a treatment for wet age-related macular degeneration – which is currently in a Phase 1/2a clinical trial. Wet macular degeneration is the leading cause of blindness in the Western world. Opthea was formerly known as Circadian Technologies, acting as a biotechnology investment fund before transitioning to developing drugs in 2008.
Benitec Biopharma’s leading product is DNA-directed RNA interference (ddRNAi) – a platform for silencing unwanted genes as a treatment for a wide range of genetic conditions. ddRNAi has broad applications, and can assist with conditions as diverse as neurological, infectious and autoimmune diseases, as well as cancers. The company’s current focus inludes hepatitis B and C, wet age-related macular degeneration and lung cancer.
Using a wearable electroencephalograph (EEG), SmartCap monitors driver fatigue by measuring changes in brain activity without significant discomfort or inconvenience. It notifies users when they are fatigued and what time of day they’re most at risk. SmartCap was formally EdanSafe, a CRCMining spin-off company.
Cochlear delivers hearing to over 400,000 people worldwide through products like the cochlear implant. Pioneered by the University of Melbourne’s Professor Graeme Clark and developed with assistance from The HEARing CRC, the bionic devices were first successfully implanted by the Royal Victorian Eye and Ear Hospital for people with moderate to profound hearing loss. The global company now employs 2800 staff and assists people in 100 countries.
Founded by the CSIRO in 2007 to commercialise the UltraBattery, Ecoult was acquired by the East Penn Manufacturing Company in 2010. The UltraBattery makes it possible to smooth out the peaks and troughs in renewable power, functioning efficiently in a state of partial charge for extended periods.
Composite materials company Quickstep was founded in 2001 to commercialise their patented manufacturing process. Working with the aerospace, automotive and defence industries, Quickstep supplies advanced carbon fibre composite panels for high technology vehicles. In 2015, the company increased its manufacturing capacity, establishing an automotive production site in Victoria in addition to their aerospace production site in NSW.
The EDV is a nanocell mechanism for delivering drugs and functional nucleic acids and can target tumours without coming into contact with normal cells, greatly reducing toxicity. Above all, the EDV therapeutic stimulates the adaptive immune response, thereby enhancing anti-tumour efficacy. More than 260 patents support the technology, developed entirely by EnGeneIC, giving the company control over its application.
Joint CEOs and directors of EnGeneIC, Dr Jennifer MacDiarmid and Dr Himanshu Brahmbhatt
Snap’s FMx is a unique approach to video surveillance that forms cameras into a network based on artificial intelligence that learns relationships between what the cameras can see. It enables advanced real-time tracking and easier compilation of video evidence. Developed at the University of Adelaide’s Australian Centre for Visual Technologies, the system is operational at customer sites in Australia, Europe and North America.
Orthocell develops innovative technologies for treating tendon, cartilage and soft tissue injuries. Its Ortho-ATI™ and Ortho-ACI™ therapies, for damaged tendons and cartilage, use the patient’s cells to assist treatments. Its latest product, CelGro™, is a collagen scaffold for soft tissue and bone regeneration.
As the demand for effective energy storage grows, RedFlow’s zinc-bromide flow batteries are gaining attention. RedFlow has outsourced its manufacturing to North America to keep up with demand, while the company’s research and development continues in Brisbane.
Since 2002, precision engineering company MiniFAB has completed more than 900 projects for customers across the globe. MiniFAB provides a complete design and manufacturing service, and has developed polymer microfluidic and microengineered devices for medical and diagnostic products, environmental monitoring, food packaging and aerospace.
RayGen’s power generation method involves an ultra high efficiency array of photovoltaic cells, which receive focused solar energy from heliostats (mirrors) that track the sun, resulting in high performance at low cost. In December 2014, RayGen and the University of New South Wales (UNSW) collaborated to produce the highest ever efficiency for the conversion of sunlight into electricity. The independently verified result of 40.4% efficiency for the advanced system is a game changer, now rivalling the performance of conventional fossil power generation.
CSL is Australia’s largest biotechnology company, employing over 14,000 people across 30 countries. The company began in 1916, when the Commonwealth Serum Laboratories was founded in Melbourne. It was incorporated in 1991, and listed on the ASX in 1994. Since that time, CSL has acquired established plasma protein maker CSL Behring, and Novartis’ influenza vaccine business, and has become a global leader in the research, manufacture and marketing of biotherapies.
Dyesol Limited (ASX: DYE) is a renewable energy supplier and leader in Perovskite Solar Cell (PSC) technology – 3rd Generation photovoltaic technology. The company’s vision is to create a viable low-cost source of electricity with the potential to disrupt the global energy supply chain and energy balance.
EvoGenix began as a startup in 2001 to commercialise EvoGene™, a powerful method of improving proteins, developed by the CSIRO and the CRC for Diagnostics. It acquired US company Absalus Inc in 2005, then merged with Australian biotechnology company Peptech in 2007, to form Arana Therapeutics. In 2009, Cephalon Inc bought the company for $207 million.
With a vision to create sustainable energy through renewable biofuels, Muradel is a joint venture between the University of Adelaide, Murdoch University and SQC Pty Ltd. Their $10.7 million Demonstration Plant converts algae and biosolids into green crude oil. Muradel has plans for upgrades to enable the sustainable production of up to 125,000 L of crude oil, and to construct a commercial plant capable of supplying over 50 megalitres of biocrude from renewable feedstocks.
iCetana’s ‘iMotionFocus’ technology employs machine learning to determine what is the ‘normal’ activity viewed by each camera in a surveillance system and alerts operators when ‘abnormal’ events occur. This enables fewer operators to monitor more cameras with greater efficiency.
Phylogica is a drug discovery service, and the owner of Phylomer® Libraries, the largest and most structurally diverse suite of natural peptides. It has worked with some of the world’s largest drug companies, including Pfizer and Roche, to uncover drug candidates.
The research compiled by Refraction was judged by a panel comprising of: Dr Peter Riddles, biotechnology expert and director on many start-up enterprises; Dr Anna Lavelle, CEO and Executive Director of AusBiotech; and Tony Peacock, Chief Executive of the Cooperative Research Centres Association. The panel considered the following: total market value, annual turnover, patents awarded and cited, funding and investment, growth year-on-year, social value, overseas expansion and major partnerships.