Tag Archives: Australian research

OrbIT group pic resized assistive technology

Game on – assistive tech for Parkinson’s disease

A gaming system called ‘OrbIT’ is being trialled to improve health outcomes for individuals with Parkinson’s disease, thanks to a collaboration between Flinders University, the University of Adelaide and Parkinson’s South Australia.

The three-year study, funded by the Estate of the late Olga Mabel Woolger, will trial the assistive technology as a cognitive training device to improve outcomes and delay the onset of dementia for people with Parkinson’s disease. The research project is led by Flinders University Rehabilitation Engineer David Hobbs and University of Adelaide neuroscientist Dr Lyndsey Collins-Praino, in partnership with Parkinson’s South Australia.

The OrbIT system is a fun and easy to use computer gaming system designed to engage the player in targeted, cognitively challenging activities. It features a novel controller which does not require a strong grip or fine motor control. This makes it highly suitable for individuals with Parkinson’s disease, who may otherwise struggle to use traditional gaming consoles.

There are over 82, 000 Australians living with Parkinson’s today, making it the most common major movement disorder and second most prevalent neurodegenerative condition. There is currently no cure.

“Within 15 to 20 years, 80% of people with Parkinson’s will go on to develop dementia”, explains Dr Collins-Praino. “Using the OrbIT system as a cognitive training device may help to slow down and prevent this.”

OrbIT was originally developed for children with cerebral palsy and has also been trialled for people undergoing stroke rehabilitation. The current collaboration came about through a chance meeting when Dr Collins-Praino attended a presentation by OrbIT lead developer Mr Hobbs and suggested the potential for OrbIT to help people with Parkinson’s.  

“Sometimes the best collaborations come about by chance”, says Dr Collins-Praino, who is looking forward to using OrbIT in a clinical setting. “It’s really exciting to have a potential tool that can make cognitive training accessible.”

The trials will take place through Parkinson’s SA’s new Brain x Body Fitness Studio, a studio which focuses on movement and flexibility, whilst also being a social hub for over 50’s. As well as traditional gym facilities, Brain x Body provides programs and assistive technologies which have been clinically proven to improve neuroplasticity,

Chief Executive Officer of Parkinson’s SA, Olivia Nassaris, has always been on the lookout for assistive technologies and was highly impressed by OrbIT when she first visited Mr Hobbs’ Flinders University laboratory last year. She describes OrbIT as the perfect project. “It happened completely organically. Dr Collins-Praino saw the potential for the benefits of OrbIT to be translated to Parkinson’s research and the collaboration has worked out perfectly between the three groups.”

“Assistive technology such as OrbIT improve quality of life by maximising independence and self-management”, says Ms Nassaris. This research trial will be an important step in improving the health outcomes for individuals with Parkinson’s disease.  

Source: University of Adelaide, Parkinson’s SA

Image: Lyn Paunovic (centre), who has Parkinson’s disease, holds the OrbIT game controller. Left to right: Lyn’s husband Tolley Paunovic, Dr Lyndsey Collins-Praino, Lyn Paunovic, Olivia Nassaris and David Hobbs.

cubesats

Lift-off for Australian CubeSats!

Featured image above: Artist’s impression of the UNSW-EcO cubesat in space. Credit: UNSW Australia

Three Australian research satellites – the first in 15 years – blasted off on Wednesday 19th April from Cape Canaveral and arrived at the International Space Station on Saturday. They will soon be deployed in orbit to explore the little-understood region above Earth known as the thermosphere.

The trio, two of them built at UNSW Australia, are part of an international QB50 mission, a swarm of 36 small satellites – known as ‘cubesats’ and weighing about 1.3 kg each – which will carry out the most extensive measurements ever undertaken of the thermosphere, a region between 200 and 380 km above Earth.

This poorly-studied and usually inaccessible zone of the atmosphere helps shield Earth from cosmic rays and solar radiation, and is vital for communications and weather formation.

cubesats
Three Australian research satellites blast off from Cape Canaveral. Credit: UNSW

Twenty-eight of the QB50 satellites, including the three Australian cubesats, were aboard the Atlas 5 rocket when it launched from Cape Canaveral Air Force Station in Florida.

The three Australian satellites are UNSW-EC0, built by UNSW’s Australian Centre for Space Engineering Research (ACSER) which will study the atomic composition of the thermosphere along with new robust computer chips and GPS; INSPIRE-2, a project led by the University of Sydney and involving UNSW and the Australian National University which was also partly built at ACSER; and SuSAT, a joint project between by the University of Adelaide and the University of South Australia.

cubesats
The INSPIRE-2 cubesat

“These are the first Australian satellites to go into space in 15 years,” says Andrew Dempster, director of the Australian Centre for Space Engineering Research (ACSER) at UNSW, and a member of the advisory council of the Space Industry Association of Australia.

“There have only been two before: Fedsat in 2002 and WRESAT in 1967. So we’ve got more hardware in space today than Australia’s had in its history.”

Sometime in May, the first 20 cubesats – including INSPIRE-2 and SUSat – will be deployed from the International Space Station, or ISS, via a Nanoracks launcher, a ‘cannon’ that will eject them at a height of 380 km (the same as the ISS), and they will drift down to a lower orbit where they can begin their measurements. UNSW-EC0 will be deployed with the remaining seven other cubesats around June 17.

cubesats
The Japanese robotic arm of the ISS hosts the Nanoracks CubeSat launcher. Credit: UNSW

Also aboard the Atlas 5 rocket is Biarri Point, a cubesat for defence applications testing carrying new GPS technology developed by UNSW’s ACSER and Australia’s Defence Science and Technology Group. It is part of a four-nation defence project between Australia, the US, the UK and Canada that will see the launch of another two cubesats over the next year. The remaining eight QB50 cubesat will be launched separately into orbit by an Indian rocket later in May.

“This zone of the atmosphere is poorly understood and really hard to measure,” says Elias Aboutanios, project leader of the UNSW-EC0 cubesat and deputy director of ACSER.

“It’s where much of the ultraviolet and X-ray radiation from the Sun collides with Earth, influencing our weather, generating auroras and creating hazards that can affect power grids and communications.

“So it’s really important we learn a lot more about it. The QB50 cubesats will probably tell us more than we’ve ever known about the thermosphere,” he says.

cubesats
Project leader of the UNSW-EC0 cubesat and deputy director of ACSER, Elias Aboutanios. Credit: UNSW

QB50 is a collaboration of more than 50 universities and research institutes in 23 countries, headed by the von Karman Institute (VKI) in Belgium. “This is the very first international real-time coordinated study of the thermosphere phenomena,” says VKI’s Davide Masutti.

“The data generated by the constellation will be unique in many ways and they will be used for many years by scientists around the world.”

Both the QB50 and Biarri projects show what Australia can do in the new age of cubesats, dubbed ‘Space 2.0’, that allows companies and researchers to develop new space applications and devices and launch them at much lower cost.

“It proves that, even with modest resources, Australians can be players in space industry and research,” says Joon Wayn Cheong, a research associate at UNSW’s School of Electrical Engineering and Telecommunications and technical lead of the UNSW-EC0 cubesat.

“UNSW-EC0 and INSPIRE-2 prove we can devise and build space-ready hardware which can tolerate the punishing strain of blast-off and the harsh conditions of space.”

cubesats
The team that built the UNSW-Ec0 and INSPIRE-2 satellites. Credit: Herzliya Science Centre

Mark Hoffman, UNSW’s Dean of Engineering, agrees. “We used to think of space as a place only big-budget space agencies could play in. The advent of cheap and powerful cubesats has made space accessible as never before, and that’s going to be great for industry and research applications. I’m delighted to see UNSW playing a leading role in this emerging sector in Australia. “

Each QB50 cubesat carries instruments with its own engineering and scientific goals. UNSW-EC0, for example, has three other experiments: a robust computer chip designed to avoid crashing in the harsh radiation of space, as some satellites and space probes are forced to do when hit by cosmic rays; a space-borne GPS to enable satellites to cluster together in swarms; and test a super-reliable computer microkernel in the harsh radiation of space.

In addition, UNSW-EC0’s chassis is made entirely from 3D-printed thermoplastic, itself an experiment to test the reliability of using  3D-printing to manufacture satellites, making them cheaper and much more customisable.

This information was first shared by UNSW Australia on 19 April 2017. Read the original article here, or watch the video below.

science and technology

Speak up for STEM and give facts a chance

As science and technology researchers, practitioners and enthusiasts, we feel very strongly that our community should think analytically and use scientific information to inform their decisions, as individuals and as a nation.

We hope our leaders in politics, business and in the media incorporate the lessons and findings of science and technology into their decision-making about health, energy, transport, land and marine use – and recognise the benefits of investing in great scientific breakthroughs and technological inventions.

But how do we ensure critical thinking is applied in decision-making? How do we incorporate and apply scientific findings and analysis in the formulation of policy, and encourage strong, strategic investment in research?

The only way is to become vocal and proactive advocates for STEM.

Scientists and technologists must see ourselves as not only experts in our field, but also as educators and ambassadors for our sector. Scientists are explicitly taught that our profession is based on logic; that it’s our job to present evidence and leave somebody else to apply it.

For people who’ve made a career of objectivity, stepping out of that mindset and into the murky world of politics and policy can be a challenge, but it’s a necessary one.

The planet is heading towards crises that can be solved by science – food and water security, climate change, health challenges, extreme weather events. It’s arguably never been more important for scientists and technologists to step outside our comfort zone and build relationships with the media, investors, and political leaders. We need to tell the stories of science and technology to solve the species-shaking challenges of our time.

A plethora of opportunities exist for STEM researchers and practitioners to improve and use their skills in communication, influence, marketing, business, and advocacy. As the peak body representing scientists and technologists, Science & Technology Australia hosts a variety of events to equip STEM professionals with the skills they need, while connecting them with the movers and shakers in those worlds.

Science meets Parliament is one of these valuable opportunities, and has been bringing people of STEM together with federal parliamentarians for 18 years. Others include Science meets Business and Science meets Policymakers.

We can provide the forum, but it’s up to STEM professionals to seize the opportunity by forging relationships with our nation’s leaders in politics, business and the media. We must ensure the voice of science is heard and heeded – not just on the day of an event, but every day.

Currently STEM enjoys rare bilateral political support; a National Innovation and Science Agenda; and a new Industry, Innovation and Science Minister, Senator Arthur Sinodinos, who has indicated his intention to continue to roll it out.

As we encounter our fourth science minister in three years, however, we cannot rest on our laurels and allow science and technology to slide down the list of priorities. Bigger challenges are also mounting, with the profession of science correspondent virtually dead in Australia and the international political culture favouring opinion and rhetoric over established fact and credibility.

Scientists and technologists must resist their natural tendency to humility, and proactively sort the nuggets of truth from the pan of silty half-truth. We must actively work to influence public debate by pushing evidence-based arguments into the media, and into the political discourse.

When our society starts assuming that we should make substantial and long-term investment in research; when the methods and findings of science and technology are routinely incorporated into shaping policy and making important decisions for the nation – we’ll consider our job to be well done.

Kylie Walker

CEO, Science & Technology Australia

Read next: Dr Maggie Evans-Galea, Executive Director of ATSE’s Industry Mentoring Network in STEM, paints a picture of Australia’s science and innovation future – one that requires a major cultural shift.

Spread the word: Help Australia become a collaborative nation! Share this piece on science and technology using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Digital Disruption Thought Leadership Series here.

evidence-based policy

Evidence-based policy in action

Science has evolved over many centuries to become an integral part of modern society, underpinning our health, wealth generation and cultural fabric. This process has been distinguished by an implicit collaboration between science and business, government, and the wider community.

However, the integration of science with evidence-based policy has – in this century – often been wilfully disregarded by politicians in many countries, who either cherry-pick or completely ignore the science when it does not accord with their political agenda. Most recently in the United States, we have seen “alternative facts” supplant scientific and other evidence bases in the “post-fact” era.

While surveys continue to show that the vast majority of people still support and believe in the benefits of science, the politicisation of science has inevitably raised seeds of doubt, or polarised many people’s world view.

So it is important now, more than ever, to reinforce with politicians the value and respect for science in the creation of evidence-based policy.

In Australia, a key connection between science and politics is the annual “Science meets Parliament” (SmP) event, which began in 1999, and which today is organised by Science and Technology Australia.  This unique event, that each year brings together hundreds of scientists and the Australian Parliament, owes its success to the way in which it saturates Parliament with science for two days; the great majority of parliamentarians are engaged in the all-pervasive nature of this important scientific exchange.

There are three key outcomes of SmP that distinguish it from a lobbying event:

1. Scientists both young and old – through their enthusiasm for their research – convey the excitement and the benefits of science to parliamentarians, thereby helping to close the “virtuous cycle” that supports science in society;

2. Scientists, at the same time, develop an appreciation for the process of government, contributing significantly to their professional development;

3. Finally, lasting networks are created between parliamentarians and scientists. They go beyond the meetings at SmP, and enable scientific engagement with Parliament to extend more broadly, both geographically and throughout scientific and parliamentary careers.

These networks, and the collaborations that they engender, are key to ensuring the ongoing contribution of science to government decision-making and evidence-based policy, and thereby to enhancing the role of science in our society.

As is the case with science and industry, it is important to continuously innovate in our governance processes; without this, the political system cannot respond to the changing needs of the community.

Science, through events like Science meets Parliament, is a key part of that evolution. We must work tirelessly to reinvigorate this engagement, and to counter those who might seek to cherry-pick and subvert the science that underpins our evidence-based society.

Professor Kenneth Baldwin

Director, Energy Change Institute, Australian National University

Founder, Science Meets Parliament

Read next: Kylie Walker, CEO of Science & Technology Australia, sheds light on the platforms that allow researchers to forge relationships with Australia’s decision-makers.

Spread the word: Help Australia become a collaborative nation! Share this piece on collaboration towards evidence-based policy using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Digital Disruption Thought Leadership Series here.

Top 25 R&D spin-offs

Top 25 R&D spin-offs

For a country that makes up just 0.3% of the world’s population, Australia packs a heavyweight punch in science – generating 3.9% of the world’s research publications. However taking that research to market has proved a broader challenge.

Fostering the commercialisation of research success and encouraging collaboration between industry and researchers is at the forefront of the government’s renewed focus on scientific innovation, with over $1.1 billion earmarked to kickstart the “ideas boom” as part of the National Innovation and Science Agenda.

“Collaboration is key to turning Australian ideas into viable and lucrative commercial products and services,” says Christopher Pyne, Minister for Industry, Innovation and Science, adding that high-tech knowhow plus innovative R&D will drive jobs and wealth in the future.

“We must capitalise on the opportunities that are presenting themselves in the economic transition taking place in Australia by being agile, innovative and creative,” Pyne says.

He notes a range of measures, including the $155 million Industry Growth Fund and the R&D Tax Incentive program, are supporting firms to innovate and drive investment into new high-growth industry sectors.

From industry-funded ventures to university spin-offs and rising star start-ups, these are the Science Meets Business Top 25 Australian research and development spin-off companies.

Click here to see the full list, or continue reading. For further insights from the leaders of the Top 25 R&D spin-off companies, read their interviews on attracting venture capital, learning from overseas marketsgetting past the valley of death, overcoming major start-up challenges and starting up.


FIBROTECH THERAPEUTICS PTY LTD

 

TYPE: NOT LISTED

CEO: Darren Kelly

SOLD FOR: US$557.5 million

INNOVATION RATIO*: 0.15


Fibrotech develops novel drug candidates to treat fibrosis (tissue scarring) associated with chronic conditions such as heart failure, kidney and pulmonary disease, and arthritis. The company spun out of research by Professor Darren Kelly at the University of Melbourne in 2006, and its principal asset is a molecule, FT011, which helps prevent kidney fibrosis associated with diabetes. In May 2014, in one of Australia’s biggest biotech deals at the time, Fibrotech was acquired by Shire, a Dublin-based pharmaceutical company, for an initial payment of US$75 million. Further payments, based on a series of milestones, will bring the total value of the sale to US$557.5 million, and the deal was awarded Australia’s best early stage venture capital deal in 2014. At the time of the sale, FT011 was in Phase 1b trials for the treatment of renal impairment in diabetics – a market worth US$4 billion annually.

*Innovation ratio = patents published/cited

Founder, CEO & director of Fibrotech Therapeutics, Professor Darren Kelly
Founder, CEO & director of Fibrotech Therapeutics, Professor Darren Kelly

SPINIFEX PHARMACEUTICALS PTY LTD

 

TYPE: LISTED

MARKET VALUE: $264 million

CEO/President: Dr Tom McCarthy

INNOVATION RATIO: 0.13

SOLD FOR: acquired by Novartis for US$200 million up-front payment plus milestone payments


Spinifex Pharmaceuticals was launched in 2005 to commercialise chronic pain treatments developed by Professor Maree Smith of The University of Queensland. Pharmaceuticals giant Novartis acquired the company in 2015 for a total of US$725 million, based on the promising results in Phase 1b and Phase 2 clinical trials. Spinifex’s treatment targets nerve receptors on peripheral nerves rather than pain receptors in the brain, making it possible to treat the pain from causes such as shingles, chemotherapy, diabetes and osteoarthritis without central nervous system side-effects such as tiredness and dizziness.

Dr Tom McCarthy_intext
CEO/President of Spinifex Pharmaceuticals, Dr Tom McCarthy

ADMEDUS LTD

 

TYPE: LISTED

MARKET VALUE: $61.88 million

COO: Julian Chick

INNOVATION RATIO: 0.02

REVENUE: $10.2 million


Admedus is a diversified healthcare company with interests in vaccines, regenerative medicine, and the sale and distribution of medical devices and consumables. Currently, the company is developing vaccines for herpes simplex virus and human papillomavirus based on Professor Ian Frazer’s groundbreaking vaccine technology. In the regenerative medicine field, Admedus is the vendor of CardioCel®, an innovative single-ply bio-scaffold that can be used in the treatment of congenital heart deformities and complex heart defects.


BIG 3 – RESMED LTD

 

TYPE: LISTED

MARKET VALUE: $7.85 billion

CEO: Michael J Farrell

INNOVATION RATIO: 0.02

REVENUE: $1.68 billion


For more than 25 years, ResMed has been a pioneer in the treatment of sleep-disordered breathing, obstructive pulmonary disease and other chronic diseases. The company was founded in 1989 after Professor Colin Sullivan and University of Sydney colleagues developed nasal continuous positive airway pressure – the first successful, non-invasive treatment for obstructive sleep apnoea. Today, the company employs more than 4000 people in over 100 countries, delivering treatment to millions of people worldwide.


BIODIEM LTD

 

TYPE: NOT LISTED

CEO/Executive Director: Julie Phillips

INNOVATION RATIO: 0.22

REVENUE: $203,809


BioDiem specialises in the development and commercialisation of vaccines and therapies to treat infectious diseases. The Live Attenuated Influenza Virus vaccine technology provides a platform for developing vaccines, including one for both seasonal and pandemic influenza. BioDiem’s subsidiary, Opal Biosciences, is developing BDM-I, a compound that offers a possible avenue for the treatment of infectious diseases that resist all known drugs.


VAXXAS PTY LTD

 

TYPE: NOT LISTED

CEO/Director: David Hoey


Vaxxas is pioneering a needle-free vaccine delivery system, the Nanopatch, which delivers vaccines to the abundant immunological cells just under the skin’s surface. Preclinical studies have shown that vaccines are effective with as little as one-hundredth of a conventional dose when delivered via a Nanopatch. In 2014, Vaxxas was selected by the World Economic Forum as a Technology Pioneer, based on the potential of Nanopatch to transform global health.


6 ACRUX DDS PTY LTD

 

TYPE: LISTED

MARKET VALUE: $122.39 million

CEO: Michael Kotsanis

INNOVATION RATIO: 0.01

REVENUE: $25.4 million

Biotech company Acrux was incorporated in 1998 after researchers at Monash University developed an effective new spray-on drug delivery technology that improved absorption through the skin and nails. In 2010, Acrux struck a US$335 million deal with global pharmaceutical company Eli Lilly for AxironTM, a treatment for testosterone deficiency in men. It was the largest single product licensing agreement in the history of Australian biotechnology.

CEO of Acrux, Michael Kotsanis
CEO of Acrux, Michael Kotsanis

PHARMAXIS LTD

 

MARKET VALUE: $72.9 million

CEO: Gary J Phillips

INNOVATION RATIO: 0.76

REVENUE: $59.25 million

Listed on the ASX in 2003, Pharmaxis has two products on the market: Bronchitol, a treatment for cystic fibrosis; and Aridol, a lung function test to diagnose and assess asthma. In 2015, Pharmaxis sold the rights to a treatment for the liver condition nonalcoholic steatohepatitis, to Boehringer Ingelheim in a deal that could be worth US$750 million.

Garyphillips_in text
CEO of Pharmaxis, Gary J Phillips

OPTHEA PTY LTD

 

TYPE: LISTED

MARKET VALUE: $42.80 million

CEO/MD: Dr Megan Baldwin

INNOVATION RATIO: 0.01

REVENUE: $939,008

With a focus on ophthalmology, Opthea’s main product is OPT-302 – a treatment for wet age-related macular degeneration – which is currently in a Phase 1/2a clinical trial. Wet macular degeneration is the leading cause of blindness in the Western world. Opthea was formerly known as Circadian Technologies, acting as a biotechnology investment fund before transitioning to developing drugs in 2008.


BENITIC BIOPHARMA LTD

 

TYPE: LISTED

MARKET VALUE: $63.01 million

CEO: Greg West

INNOVATION RATIO: 0.14

REVENUE: $1.37 million

Benitec Biopharma’s leading product is DNA-directed RNA interference (ddRNAi) – a platform for silencing unwanted genes as a treatment for a wide range of genetic conditions. ddRNAi has broad applications, and can assist with conditions as diverse as neurological, infectious and autoimmune diseases, as well as cancers. The company’s current focus inludes hepatitis B and C, wet age-related macular degeneration and lung cancer.


10 CATAPULT GROUP INTERNATIONAL LTD

 

TYPE: LISTED

MARKET VALUE: ~$256 million

CEO: Shaun Holthouse

REVENUE: $11.8 million

Catapult makes athletic performance monitoring systems using global and local positioning technologies for more than 750 elite teams, universities and institutions worldwide. The technology was commercialised in 2006 and its IPO in December 2014 raised more than $12 million from investors – including from US billionaire Mark Cuban.

CEO of Catapult, Shaun Holthouse
CEO of Catapult, Shaun Holthouse

11 SMARTCAP TECHNOLOGIES PTY LTD

 

CEO: Dush Wimal

INNOVATION RATIO: 0.03

TYPE: NOT LISTED

Using a wearable electroencephalograph (EEG), SmartCap monitors driver fatigue by measuring changes in brain activity without significant discomfort or inconvenience. It notifies users when they are fatigued and what time of day they’re most at risk. SmartCap was formally EdanSafe, a CRCMining spin-off company.

CEO of Smartcap, Dush Wimal
CEO of Smartcap Technologies, Dush Wimal

BIG 3 – COCHLEAR LTD

 

TYPE: LISTED

MARKET VALUE: $4.8 billion

INNOVATION RATIO: 0.05

CEO/PRESIDENT: Chris Smith

REVENUE: $925.6 million

Cochlear delivers hearing to over 400,000 people worldwide through products like the cochlear implant. Pioneered by the University of Melbourne’s Professor Graeme Clark and developed with assistance from The HEARing CRC, the bionic devices were first successfully implanted by the Royal Victorian Eye and Ear Hospital for people with moderate to profound hearing loss. The global company now employs 2800 staff and assists people in 100 countries.

CEO/President of Cochlear, Chris Smith
CEO/President of Cochlear, Chris Smith

12 ECOULT PTY LTD

 

TYPE: NOT LISTED

CEO: John Wood

Founded by the CSIRO in 2007 to commercialise the UltraBattery, Ecoult was acquired by the East Penn Manufacturing Company in 2010. The UltraBattery makes it possible to smooth out the peaks and troughs in renewable power, functioning efficiently in a state of partial charge for extended periods.


13 QUICKSTEP HOLDINGS LTD

 

MARKET VALUE: $87.09 million

CEO/MD: David Marino

INNOVATION RATIO: 0.04

REVENUE: $39.51 million

Composite materials company Quickstep was founded in 2001 to commercialise their patented manufacturing process. Working with the aerospace, automotive and defence industries, Quickstep supplies advanced carbon fibre composite panels for high technology vehicles. In 2015, the company increased its manufacturing capacity, establishing an automotive production site in Victoria in addition to their aerospace production site in NSW.


14 ENGENEIC LTD

 

TYPE: NOT LISTED

JOINT CEOs/DIRECTORS: Dr Jennifer MacDiarmid and Dr Himanshu Brahmbhatt

MARKET VALUE: $178 million

INNOVATION RATIO: 0.03

EnGeneIC’s cancer treatment platform, the EnGeneIC Dream Vector (EDVTM), is a first-in-class cytoimmunotherapy.

The EDV is a nanocell mechanism for delivering drugs and functional nucleic acids and can target tumours without coming into contact with normal cells, greatly reducing toxicity. Above all, the EDV therapeutic stimulates the adaptive immune response, thereby enhancing anti-tumour efficacy. More than 260 patents support the technology, developed entirely by EnGeneIC, giving the company control over its application.

Joint CEOs and directors of EnGeneIC, Dr Jennifer MacDiarmid and Dr Himanshu Brahmbhatt
Joint CEOs and directors of EnGeneIC, Dr Jennifer MacDiarmid and Dr Himanshu Brahmbhatt

15 SNAP NETWORK SURVEILLANCE PTY LTD

 

TYPE: NOT LISTED

CEO: Simon Langsford

CTO/FOUNDER: Dr Henry Detmold

Snap’s FMx is a unique approach to video surveillance that forms cameras into a network based on artificial intelligence that learns relationships between what the cameras can see. It enables advanced real-time tracking and easier compilation of video evidence. Developed at the University of Adelaide’s Australian Centre for Visual Technologies, the system is operational at customer sites in Australia, Europe and North America.


16 ORTHOCELL LTD

 

TYPE: LISTED

MARKET VALUE: $32.89 million

MD: Paul Anderson

INNOVATION RATIO: 0.81

REVENUE: $1.69 million

Orthocell develops innovative technologies for treating tendon, cartilage and soft tissue injuries. Its Ortho-ATI™ and Ortho-ACI™ therapies, for damaged tendons and cartilage, use the patient’s cells to assist treatments. Its latest product, CelGro™, is a collagen scaffold for soft tissue and bone regeneration.


17 REDFLOW

 

TYPE: LISTED

MARKET VALUE: $111.3 million

CEO: Stuart Smith

INNOVATION RATIO: 0.16

REVENUE: $265,436

As the demand for effective energy storage grows, RedFlow’s zinc-bromide flow batteries are gaining attention. RedFlow has outsourced its manufacturing to North America to keep up with demand, while the company’s research and development continues in Brisbane.

CEO of Redflow, Stuart Smith
CEO of Redflow, Stuart Smith

18 MINIFAB PTY LTD

 

TYPE: NOT LISTED

CEO: Dr Erol Harvey

INNOVATION RATIO: 2

Since 2002, precision engineering company MiniFAB has completed more than 900 projects for customers across the globe. MiniFAB provides a complete design and manufacturing service, and has developed polymer microfluidic and microengineered devices for medical and diagnostic products, environmental monitoring, food packaging and aerospace.


19 RAYGEN RESOURCES PTY LTD

 

TYPE: NOT LISTED

CEO: Robert Cart

INNOVATION RATIO: 0.74

RayGen’s power generation method involves an ultra high efficiency array of photovoltaic cells, which receive focused solar energy from heliostats (mirrors) that track the sun, resulting in high performance at low cost. In December 2014, RayGen and the University of New South Wales (UNSW) collaborated to produce the highest ever efficiency for the conversion of sunlight into electricity. The independently verified result of 40.4% efficiency for the advanced system is a game changer, now rivalling the performance of conventional fossil power generation.

Robert Cart_intext
CEO of RayGen Resources, Robert Cart

BIG 3 – CSL LTD

 

TYPE: LISTED

MARKET VALUE: $44.93 billion

CEO/MD: Paul Perreault

INNOVATION RATIO: 0.05

REVENUE: US$5.6 million

CSL is Australia’s largest biotechnology company, employing over 14,000 people across 30 countries. The company began in 1916, when the Commonwealth Serum Laboratories was founded in Melbourne. It was incorporated in 1991, and listed on the ASX in 1994. Since that time, CSL has acquired established plasma protein maker CSL Behring, and Novartis’ influenza vaccine business, and has become a global leader in the research, manufacture and marketing of biotherapies.


20 CARNEGIE WAVE ENERGY LTD

 

TYPE: LISTED

MARKET VALUE: $88.38 million

MD: Dr Michael Ottaviano

INNOVATION RATIO: 0.21

REVENUE: $1.72 million

Carnegie Wave Energy’s CETO technology converts ocean swell into zero-emission renewable power and desalinated freshwater. Ten years of research at test sites off the coast of Western Australia, along with over $100 million in local and foreign investment, has helped grow the company’s global profile.

A recent £2 million grant from the Scottish government boosted stock prices.


21 DYESOL LTD

 

TYPE: LISTED

MD: Richard Caldwell

MARKET VALUE: $110.13 million

INNOVATION RATIO: 0.12

REVENUE: $1.44 million

Dyesol Limited (ASX: DYE) is a renewable energy supplier and leader in Perovskite Solar Cell (PSC) technology – 3rd Generation photovoltaic technology. The company’s vision is to create a viable low-cost source of electricity with the potential to disrupt the global energy supply chain and energy balance.

MD of Dyesol, Richard Caldwell
MD of Dyesol, Richard Caldwell

22 EVOGENIX LTD

 

TYPE: NOT LISTED

SOLD FOR: $207 million

INNOVATION RATIO: 0.11

EvoGenix began as a startup in 2001 to commercialise EvoGene™, a powerful method of improving proteins, developed by the CSIRO and the CRC for Diagnostics. It acquired US company Absalus Inc in 2005, then merged with Australian biotechnology company Peptech in 2007, to form Arana Therapeutics. In 2009, Cephalon Inc bought the company for $207 million.


23 MURADEL PTY LTD

 

TYPE: NOT LISTED

CEO/MD: David Lewis

REVENUE: $4.18 million

With a vision to create sustainable energy through renewable biofuels, Muradel is a joint venture between the University of Adelaide, Murdoch University and SQC Pty Ltd. Their $10.7 million Demonstration Plant converts algae and biosolids into green crude oil. Muradel has plans for upgrades to enable the sustainable production of up to 125,000 L of crude oil, and to construct a commercial plant capable of supplying over 50 megalitres of biocrude from renewable feedstocks.


24 iCETANA

 

TYPE: NOT LISTED

CEO: Gary Pennefather

INNOVATION RATIO: 0.05

iCetana’s ‘iMotionFocus’ technology employs machine learning to determine what is the ‘normal’ activity viewed by each camera in a surveillance system and alerts operators when ‘abnormal’ events occur. This enables fewer operators to monitor more cameras with greater efficiency.


25 PHYLOGICA LTD

 

TYPE: LISTED

MARKET VALUE: $33.82 million

CEO: Dr Richard Hopkins

INNOVATION RATIO: 0.09

Phylogica is a drug discovery service, and the owner of Phylomer® Libraries, the largest and most structurally diverse suite of natural peptides. It has worked with some of the world’s largest drug companies, including Pfizer and Roche, to uncover drug candidates.


The Top 25 Science Meets Business R&D spin-off companies was written by Refraction Media in consultation with universities, industry and funding bodies, and supported by data from Thomson Reuters.

The research compiled by Refraction was judged by a panel comprising of: Dr Peter Riddles, biotechnology expert and director on many start-up enterprises; Dr Anna Lavelle, CEO and Executive Director of AusBiotech; and Tony Peacock, Chief Executive of the Cooperative Research Centres Association. The panel considered the following: total market value, annual turnover, patents awarded and cited, funding and investment, growth year-on-year, social value, overseas expansion and major partnerships.

Women in science and business

Academia has a checkered history of elevating women in science. While many leading women scientists to-date have acted as truly innovative researchers – Marie Curie for example – much of the way science is celebrated has innate bias.

Scientists are ranked by academic achievement – promotions and grants, recognition and awards – all emphasising papers published and cited, fellowships received and so on.

Enabling women in science

Australia needs to clearly develop a new platform of scientific achievement – in which, according to the $1.1 billion National Innovation and Science Agenda (NISA), innovation is “critical to improving Australia’s competitiveness, standard of living, high wages and generous social welfare net”.

NISA notes several important factors, but fails to clearly set an agenda for women in science to succeed within the new innovation framework. For instance, it cites:

“We will introduce, for the first time, clear and transparent measures of non-academic impact and industry engagement when assessing university research performance.”

These factors are also critical in removing barriers to career advancement for women in science who have taken a career break, and whose academic output is less than men in equivalent positions as a result.

It also notes that women hold “around a quarter of STEM [science, technology, engineering and maths] and ICT [information and communications technology] related jobs and are significantly underrepresented in high-level research positions. We need to engage more girls in STEM and computing, and provide pathways to progress their interest across the education system and into careers.”

To address this NISA has earmarked $13 million to improve opportunities for women in science and STEM more broadly. How this money will be spent is unclear.

There is a strong and clear need to alter the way that scientific achievements are acknowledged when looking at scientists’ track records, grants eligibility and promotional opportunities. We need to reward collaboration, to allow other career achievements along with citations and impact factor to be part of the recognition process.

We need to alter many things about the way scientists are recognised to promote women in science, from looking for bias in the language we use to valuing the mentorship provided by scientists in a more inclusive and meaningful way.

There needs to be flexibility, appropriate leave and allowances for travel factored into work in science. Education around bias is important, and much could be learned from the corporate sector here.

This is not the time to take baby steps in addressing gender equity for women in science. We need to take great strides, and look to the government for greater leadership in addressing this sooner rather than later.

– Heather Catchpole, Editor, KnowHow magazine

Science Meets Business women’s success stories

Science Meets Business profiles celebrate the women in science today.

[huge_it_portfolio id=”3″]

EMU High-Resolution Backscattering Spectrometer

Watch this animation to see how neutrons travel through the EMU Backscattering Spectrometer and are scattered from a sample. EMU is one of a suite of neutron-scattering instruments at ANSTO (Australian Nuclear Science and Technology Organisation) based at the Bragg Institute.

Atoms move in a variety of ways, for example by vibrating, oscillating and rotating within a material, and this can have a huge effect on the material’s properties and function. EMU reveals dynamics in protein samples, for example, helping scientists to better understand human biology – ultimately leading to better drug design.

EMU will open up a new energy window to the Australian research community, one that cannot easily be accessed with X-ray or optical spectroscopy, though some of the same physics or chemistry can sometimes be tackled with NMR or muon-spin resonance.

EMU is funded as part of the Australian Government’s Super-Science Initiative.  Its conceptual design was completed in early 2010. Find out more at ANSTO.