Tag Archives: Cloud computing

digital business

Digital business is every business

Change has always been essential to businesses wishing to maintain relevance and market share. However, the rate of change, driven by Moore’s law – that computing processing power doubles every two years – has been accelerating over the past few decades. So, it’s now difficult to stay abreast of the latest trends, and the threats and opportunities they present.

From new platforms that leverage the sharing economy, such as Airbnb and Uber, to recent advances in social, cognitive and spatial computing, business models are being disrupted in ways many people find difficult to comprehend, let alone respond to in a timely manner.

For example, in a study of corporate longevity by the strategy-consulting firm Innosight, the average tenure of companies in the S&P 500 – the US stock market index of 500 large companies’ market capitalisation – had dropped from 33 years in 1965 to 20 years in 1990, to a forecast of 14 years within the next decade.

In order to stay relevant, organisations need to embrace the reality that all businesses are digital businesses.

It is no longer sufficient to just acknowledge this reality; it must be deeply understood and adopted at all levels of the firm. A good place to start is the famous article by Marc Andreessen: “Why Software is Eating the World”.

Digital disruption is coded in software. Gains in efficiency and accuracy mean that business processes are increasingly being implemented with software – even in long-established firms in traditional industries.

Recent advances in robotic process automation and machine learning are ensuring that this trend will continue, consuming ever-larger sections of the business and displacing workers in lower-end cognitive roles, such as tasks performed in service delivery centres. Yet, developing software in a traditional enterprise is difficult to do well.

Fortunately, software development has itself undergone a number of transformations. The first is the transition from waterfall (a non-iterative approach to software development) to agile approaches to developing software.

This is grounded in the realisation that higher quality software products – those with fewer bugs that meet the business objectives – result when business and IT professionals work closely together to iteratively co-create the solutions.

As cloud computing becomes more ubiquitous, the provision of the hardware upon which the software executes has itself come to be defined in software and hosted by a (trusted) third party.

Cloud hosting has enabled a new range of service offerings, from Infrastructure as a Service (IaaS) to Platforms as a Service (PaaS) to Software as a Service (SaaS), depending how much of the software “stack” is hosted by a third party.

The primary benefits of cloud computing are speed and flexibility. It is possible to “spin-up” (i.e. create) instances of servers to perform tasks in minutes, instead of weeks, and discard them when they are no longer required.

This is particularly useful for workloads that are spiky in nature, such as data analytics, which consume large amounts of computational resources for relatively short periods.

Finally, there’s the rise of DevOps. This describes the merging of software development and operations roles into a single group or team to ensure that changes in software are delivered to the end-users as quickly as possible.

This in turn introduces the benefits of automation to the delivery of software solutions, resulting in the ability to continuously integrate and deliver new versions of software to customers.

Each of these revolutions in software development: agile, cloud and DevOps, allow organisations who implement them to run digital business experiments and innovate more quickly and rigorously than ever before.

If the lessons learned from running these experiments are properly captured and shared, then the result may what MIT systems scientists Peter Senge first forsaw in 1990 – a true “learning organisation”1.

After all, to quote the famous business strategist Arie de Geus: “The ability to learn faster than your competitors may be the only sustainable competitive advantage”.

Dr Crighton Nichols

Technology Innovation Leader, PwC Australia

Read next: Digital transformation executive, Vishy Narayanan, reveals the attributes of a digital disruptor and the keys to transforming your business.

Spread the word: Help Australia become digital savvy nation! Share this piece on digital disruptors using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Women in STEM Thought Leadership Series here.

1 Senge, P. M. (1990) The Fifth Discipline. The art and practice of the learning organization, London: Random House.

robots

Blue technology revolution

Featured image above: Humanoid robots, like Ocean One, may soon replace human divers in carrying out deep or dangerous ocean research and engineering tasks. Credit: Osada/Seguin/DRASSM

An industrial revolution is unfolding under the seas. Rapid progress in the development of robots, artificial intelligence, low-cost sensors, satellite systems, big data and genetics are opening up whole new sectors of ocean use and research. Some of these disruptive marine technologies could mean a cleaner and safer future for our oceans. Others could themselves represent new challenges for ocean health. The following 12 emerging technologies are changing the way we harvest food, energy, minerals and data from our seas.

1. Autonomous ships

Credit: Rolls-Royce

You’ve heard of driverless cars – soon there may be skipperless ships. Ocean shipping is a $380 billion dollar industry. Like traffic on land, ocean traffic is a major source of pollution, can introduce invasive species, and even causes ocean road-kills. For example, over 200 whales were struck by ships in the past decade. Companies like Rolls Royce envision autonomous shipping as a way to make the future of the industry more efficient, clean and cost-effective. Skipperless cargo ships can increase efficiency and reduce emissions by eliminating the need for accommodation for crew, but will require integration of existing sensor technology with improved decision-making algorithms.

2. SCUBA droids

Credit: Osada/Seguin/DRASSM

SCUBA divers working at extreme depths often have less than 15 minutes to complete complicated tasks, and they submit their bodies to 10 times normal pressure. To overcome these challenges, a Stanford robotics team designed Ocean One: a humanoid underwater robot dexterous enough to handle archaeological artefacts that employs force sensors to replicate a sense of touch for its pilot. Highly skilled humanoid robots may soon replace human divers in carrying out deep or dangerous ocean research and engineering tasks.

3. Underwater augmented reality glasses

Credit: US Navy Photo by Richard Manley

Augmented and virtual reality technologies are becoming mainstream and are poised for enormous growth. The marine sector is no exception. US navy engineers have designed augmented vision displays for their divers – a kind of waterproof, supercharged version of Google Glass. This new tech allows commercial divers and search and rescue teams to complete complex tasks with visibility near zero, and integrates data feeds from sonar sensors and intel from surface support teams.

4. Blue revolution

Credit: InnovaSea

The year 2014 was the first in which the world ate more fish from farms than the wild. Explosive growth in underwater farming has been facilitated by the development of new aquaculture tech. Submerged “aquapod” cages, for example, have been deployed in Hawaii, Mexico, and Panama. Innovations like this have moved aquaculture further offshore, which helps mitigate problems of pollution and disease that can plague coastal fish farms.

5. Undersea cloud computing

Credit: Microsoft

Over 95% of internet traffic is transmitted via undersea cables. Soon, data may not only be sent, but also stored underwater. High energy costs of data centres (up to 3% of global energy use) have driven their relocation to places like Iceland, where cold climates increase cooling efficiency. Meanwhile, about 40% of people on the planet live in coastal cities. To simultaneously cope with high real estate costs in these oceanfront growth centres, reduce latency, and overcome the typically high expense of cooling data centres, Microsoft successfully tested a prototype underwater data centre off the coast of California last year. Next-generation underwater cloud pods may be hybridised with their own ocean energy-generating power plants.

6. New waves of ocean energy

Credit: Carnegie Wave Energy

The ocean is an enormous storehouse of energy. Wave energy alone is estimated to have the technical potential of 11,400 terawatt-hours/year (with sustainable output equivalent to over 400 small nuclear power plants). Technological innovation is opening up new possibilities for plugging into the power of waves and tides. A commercial project in Australia, for example, produces both electricity and zero-emission desalinated water. The next hurdles are scaling up and making ocean energy harvest cost-efficient.

7. Ocean thermal energy

Credit: KRISO (Korea Research Institute of Ships & Ocean engineering)

Ocean thermal energy conversion technology, which exploits the temperature difference between shallow tropical waters and the deep sea to generate electricity, was successfully implemented in Hawaii last year at its largest scale yet. Lockheed Martin is now designing a plant with 100 times greater capacity. Drawing cold water in large volumes up from depths of over 1 kilometre requires large flexible pipelines made with new composite materials and manufacturing techniques.

8. Deep sea mining

Credit: Nautilus Minerals

Portions of the seafloor are rich in rare and precious metals like gold, platinum and cobalt. These marine mineral resources have, up until now, lain mostly out of reach. New 300 tonne waterproof mining machines were recently developed that can now travel to some of the deepest parts of the sea to mine these metals. Over a million square kilometres of ocean have been gazetted as mining claims in the Pacific, Atlantic, and Indian oceans, and an ocean gold rush may open up as early as 2018. Mining the seafloor without destroying the fragile ecosystems and ancient species often co-located with these deep sea mineral resources remains an unsolved challenge.

9. Ocean big data

Credit: Windward

Most large oceangoing ships are required to carry safety sensors that transmit their location through open channels to satellites and other ships. Several emerging firms have developed sophisticated algorithms to process this mass influx of ocean big data into usable patterns that detect illegal fishing, promote maritime security, and help build intelligent zoning plans that better balance the needs of fishermen, marine transport and ocean conservation. In addition, new streams of imagery from nanosatellite constellations can be analysed to monitor habitat changes in near-real time.

10. Medicines from the seas

Credit: PharmaSea

The oceans hold vast promise for novel life-saving medications such as cancer treatments and antibiotics. The search for marine-derived pharmaceuticals is increasing in momentum. The European Union, for example, funded a consortium called PharmaSea to collect and screen biological samples using deep sea sampling equipment, genome scanning, chemical informatics and data-mining.

11. Coastal sensors

Image: Smartfin

The proliferation of low-cost, connected sensors is allowing us to monitor coastlines in ways never possible before. This matters in an ocean that is rapidly warming and becoming more acidic as a result of climate change. Surfboard-embedded sensors could crowd-source data on temperature, salinity and pH similar to the way traffic data is being sourced from drivers’ smartphones. To protect the safety of beachgoers, sonar imaging sensors are being developed in Australia to detect sharks close to shore and push out real-time alerts to mobile devices.

12. Biomimetic robots

Credit: Boston Engineering

The field of ocean robotics has begun borrowing blue prints from the world’s best engineering firm: Mother Nature. Robo-tuna cruise the ocean on surveillance missions; sea snake-inspired marine robots inspect pipes on offshore oil rigs; 1,400 pound crab-like robots collect new data on the seafloor; and robo-jellyfish are under development to carry out environmental monitoring. That ocean species are models for ocean problem-solving is no surprise given that these animals are the result of millions of years of trial and error.

Outlook

Our fate is inextricably linked to the fate of the oceans. Technological innovation on land has helped us immeasurably to clean up polluting industries, promote sustainable economic growth, and intelligently watch over changes in terrestrial ecosystems.

We now need ocean tech to do the same under the sea.

As the marine industrial revolution advances, we will need to lean heavily on innovation, ingenuity and disruptive tech to successfully take more from the ocean while simultaneously damaging them less.

– Douglas McCauley and Nishan Degnarain

This article was first published by World Economic Forum on 16 September 2016. Read the original article here.

cloud collaboration

Cloud collaboration

Featured image above: the Square Kilometre Array (SKA) by SKA Organisation

Cloud services – internet resources available on demand – have created a powerful computing environment, with big customers like the US Government and NASA driving developments in data and processing.

When building the infrastructure to support the Square Kilometre Array (SKA), soon to be the world’s biggest radio telescope, the International Centre for Radio Astronomy Research (ICRAR) benefitted from some heavyweight cloud computing experience.

ICRAR’s executive director, Professor Peter Quinn, says the centre approached cloud computing services company Amazon Web Services (AWS) to assess whether it could process the data from the SKA.

When operational in 2024, the SKA will generate data rates in excess of the entire world’s internet traffic.

Cloud collaboration
An artist’s impression of the Square Kilometre Array’s antennas in Australia. © SKA Organisation

ICRAR used an international consortium of astronomers to conduct a survey with the Janksy-VLA telescope, employing AWS to process the data, and they are now trying to determine how the services will work with a larger system.

Head of ICRAR’s Data Intensive Astronomy team, Professor Andreas Wicenec, says there are many options from AWS.

“Things are changing quickly – if you do something today, it might be different next week.”

Quinn says cloud systems assist international collaboration by providing all researchers with access to the same data and software. They’re also cost-effective, offering on-demand computing resources where researchers pay for what they use.

– Laura Boness

www.icrar.org

 

Connecting science with industry