Tag Archives: robotics

The autonomous future of warfare

Imagine a military robot that can formidably augment the firepower of an army patrol unit, then switch modes to carry wounded soldiers back to base. It sounds like a scene from Terminator, but such high-tech robotics remain a distant prospect. Robots are not yet capable of reliably seeing, comprehending and assessing what is unfolding around them.

However, a new Defence Cooperative Research Centre (D-CRC) for Trusted Autonomous Systems has recently been formed to help close the gap between the tools and knowledge we currently have and the future technologies we can imagine — innovations that will  dramatically extend the capabilities of our defence forces and make our personnel safer than ever before.

The new D-CRC was announced by Defence Minister Christopher Pyne in December 2017, and will start out with $50 million in funding from the Next Generation Technologies Fund.

“The D-CRC’s overarching goal is to deliver world-leading autonomous and robotic technologies to the Australian Defence Force, which will enable trusted and effective co-operation between humans and machines,” says Prof Rob Sale, interim D-CRC CEO.

To start with, projects are being proposed and led by Australian industry, but will also have input at every stage from the Department of Defence Science and Technology (DST).

Australian companies and universities are doing world-class work in many areas relevant to Trusted Autonomous Systems, but they are broadly distributed, says Sale. The D-CRC instead aims to “integrate the talent pool spread across the country and coordinate their efforts,” he adds.

Ethical and legal parameters

Alongside projects developed by teams in the maritime, land and aerospace domains, the D-CRC will run activity groups to explore and mature ethical and legal frameworks for future autonomous systems to operate.

Dr Jason Scholz, chief scientist and engineer for the D-CRC on Trusted Autonomous Systems, says that some of these activities aim to address ethical points, such as “Should we do it?” and “Why would we do it?”. Other activities will consider legal protocols for how people and machines can work together.

For example, Scholz’s team is already investigating a commander–machine legal-agreement protocol in which a human commander might define a goal and a pool of machines then identify which aspects of that goal they can achieve or contribute towards.

“The commander would in effect accept or reject each of those offers, just like we do in contract law, thereby binding the machines for a period of time to do that work,” Scholz says.

Seeing, sensing, perceiving

These are all ideas for the future. “Robots generally lack a ‘theory of mind’. They don’t realise that some objects have beliefs and desires,” says Scholz. The Australian Centre for Robotic Vision is engaged in groundbreaking work to improve the ‘visual’ systems of robots, including sonar detection for underwater robots and infrared vision for robots to operate at night. Seeing is one thing. But what’s next?

“Once we have robots that can see, we want robots to comprehend on some level too,” says Scholz. “Robots that comprehend: ‘Here are objects in an environment… What does it mean?”

To this end, the visionaries at the Australian Centre for Robotic Vision may team up via the D-CRC with an Australian centre of excellence in artificial intelligence. The agility afforded by working directly with Defence on these robotics projects will enable accelerated development, says Scholz, because rudimentary prototypes can quickly get input to make them functional. “It’s the only way I know of to develop technology that’s never been built before and where we don’t know how to do it — we just have a sense that it’s the right way to go,” he says.

Redefining the equation

D-CRC projects must be ahead of the curve to give Australia’s military the edge. With a relatively small defence force, a major investment in navy vessels and aircraft, and a large country to defend, the Department of Defence recognises the potential of Trusted Autonomous Systems to extend and augment its reach. “We talk in terms of ‘force multipliers’,” says Scholz.

Taking risks on projects that don’t just push the envelope, but “blow it apart”, are part of the centre’s remit, he says. Examples that might be considered include ‘tag-teaming’: inexpensive autonomous robotics underwater systems that can swarm the ocean floor in advance of multi-million-dollar Royal Australian Navy vessels, clearing a path through minefields or scouting out the bathymetry of the seafloor.

“We want autonomous systems that will survive in a warfare environment,” he says, and he’s not just talking about physicality. New kinds of platforms such as social and self-sensing are important as well, to enable effective interaction with humans.

This first CRC for Defence will operate for seven years, with options to extend if promising robotics projects need further development. The Brisbane headquarters are expected to be established in mid 2018.

-Natalie Filatoff

rUNSWift

Silicon champions

Imagine a soccer grand final where a team of fully autonomous humanoid robots beats the latest winners of the World Cup, all within the official guidelines of FIFA.  

This is the long-term vision for RoboCup, an international robot soccer championship that highlights the latest developments in artificial intelligence (AI) and robotics research. 

Since first entering RoboCup in 1999, UNSW’s team rUNSWift has been a consistent leader in the competition. The team, made up of a mix of the university’s top engineering students and robotics experts, has taken out five world titles, most recently in 2014 and 2015. Only one other team, Germany’s B-Human (a joint team from the University of Bremen and the German Research Centre for Artificial Intelligence, or DFKI) have managed to equal them.

“This is the ‘space race’ of robotics,” says Maurice Pagnucco, Deputy Dean (Education) of UNSW’s Faculty of Engineering and Head of the School of Computer Science and Engineering. “What we learn from robots playing soccer can be applied to industry and help us solve difficult, real-world problems.”  

The competition is a standard platform league of fully autonomous Nao humanoid robots, which compete against each other in teams of five. With no physical advantage, what differentiates the teams from each other is the software and AI the engineers create in the months leading up to the competition. Once the game kicks off, the robots are on their own. 

 “The design process is challenging, as we have to create software that’s robust enough to handle the different situations a soccer player may face,” says software engineer Sean Harris, rUNSWift’s successful leader in 2014 and 2015. “The robot must react quickly and effectively in a variety of unknown situations.”  

It’s this ability to respond quickly that has set rUNSWift apart from other teams competing for the world title. Over hours of simulations and machine learning tests, the UNSW squad has developed a walking code that enables the robots to walk faster than most of their competitors.  

“We start by designing the larger components, and then work our way down to the details of how each component will operate,” says Harris, who now creates software for Cruise GM’s self-driving cars. “We test several different approaches on a weekly basis and fine-tune the best for each task.”

RoboCup winners cannot rest on their laurels. Each year, the software developed by the winning team is shared with all other teams, forcing the technology to accelerate to stay ahead.

RoboCup attracts interested scouts from leading technology brands, such as Google, Microsoft and Dell. It will be held in Sydney in 2019 and is expected to attract up to 600 teams and 20,000 spectators.

– Gemma Conroy

university to business

Bringing business to uni

Prime Minister Turnbull coined the catchphrase “collaborate or crumble” in December 2015 as he launched the $5 billion National Innovation and Science Agenda (NISA).

The phrase replaced the longstanding “publish or perish” dictum to engage university researchers with NISA’s ambitious goals. Since then, universities have implemented several of the recommendations from the Watt Review, which was tasked with bringing into force changes to university research funding models to incentivise collaboration with business.

NISA simultaneously introduced financial incentives and initiatives to boost the innovation performance of Australian business.

Some of these opportunities can be leveraged within the framework of the business to business (B2B) model. Considerably more could be leveraged from the still relatively unexploited university to business (U2B) model.

Bringing university to business

A key advantage of the university to business model is that universities aren’t driven by the company bottom line. In principle, this should make cooperation and collaboration significantly easier to manage than in the B2B model.

To take advantage of the NISA incentives and initiatives, however, new U2B collaborations need to be established.

This is a challenge, because university research and Australian business have traditionally existed in parallel universes. One practical strategy is universities opening the doors to their own research hubs.

Established as “knowledge transaction spaces”, similar to industry-led Knowledge Hubs, university research hubs are ideal for university to business interactions because they engage researchers from a broad range of disciplines, with diverse skills sets – a veritable smorgasbord of intellectual resources all in one place.

The Charles Perkins Centre Hub at the University of Sydney, for example, is a melting pot of researchers in metabolic disease, and was established deliberately to be highly interdisciplinary and de-shackled from conventional biomedical research approaches.

Indeed, its approach is strongly aligned with the “convergence” strategy advocated by the Massachusetts Institute of Technology in their 2016 report, based on an earlier white paper.

The University of Sydney’s newest research hub is the Sydney Nanoscience Hub, part of the Australian Institute for Nanoscale Science and Technology. Although STEM-focused, nanoscience and nanotechnology involves diverse disciplines and has broad applications, some of which cannot even be imagined.

While quantum computing is attracting enormous interest from business, some researchers are looking to biology for inspiration to design next-generation nanotechnology devices. Why biology? Because every interaction between molecules in living organisms occurs on nano-scales.

In fact, some proteins are even referred to as “nano-machines” and because they operate so efficiently in such a busy, compact environment, they potentially hold the clue to discovering how to make practical quantum computers work in the real world.

Similarly, bio-inspired nanotechnology devices, designed to emulate brain-like adaptive learning, open up the possibility of neuromorphic “synthetic intelligence” hardware in next-generation autonomous systems.

Such synthetically intelligent robots could be sent to remote, unexplored places, such as the deep ocean or deep space. They could be used in place of real humans without requiring any pre-programming; information processing and critical decision making would occur on the fly, in real time – just as if they were real humans.

Collaborate and accelerate

The benefits of collaboration may seem obvious, but sometimes it is worth stating the obvious from different perspectives. When people interact, they self-organise, forming groups that operate collectively to achieve imperatives as well as unexpected outcomes.

These outcomes would otherwise not be possible at the individual level – the whole is indeed greater than the sum of its parts. We experience this every day now through social media.

In the internet age that we find ourselves in today, it has never been more important to collaborate, simply because of the sheer volume of information we have access to and the increasing rate at which this data is growing.

We cannot feasibly keep up with this as individuals, but as teams, we can.

Knowledge can be gained by individuals much more effectively through interactions with others than by searching the internet or reading a research publication.

That new shared information can be applied more efficiently. This means that through collaboration, researchers and business can accelerate their progress on the path to success, however they each choose to measure it. 

Professor Zdenka Kuncic

Founding Co-Director, Australian Institute for Nanoscale Science and Technology, The University of Sydney

Read next: Professor Andrew Rohl, Director of the Curtin Institute for Computation, compares academic collaboration with partnerships that involve industry. 

Spread the word: Help Australia become a collaborative nation! Share this piece on the university to business collaboration model using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Digital Disruption Thought Leadership Series here.

horticulture innovation

Horticulture Innovation Centre to increase farm efficiencies

Featured image above: Horticulture Innovation Australia’s CEO John Lloyd with Assistant Minister for Agriculture Anne Ruston and University of Sydney’s Vice Chancellor Michael Spence. Credit:Hort Innovation and USYD

Australia has opened its first horticultural robotics learning and development hub, signifying the industry’s determination to adopt on-farm technologies, ramp up export capacity and develop future leaders in non-traditional areas of horticulture.

Located at the University of Sydney, the Horticulture Innovation Centre for Robotics and Intelligent Systems (HICRIS) will initially host a $10 million commitment to projects in robotics and autonomous technology that aim to increase farm efficiencies.

Horticulture Innovation Australia (Hort Innovation) chief executive John Lloyd says the new centre will help the horticulture industry minimise labour costs and prepare for the future.

“Never before have we seen this level of innovation in the horticulture industry. Through working with the University of Sydney, we have been able to develop technology that can detect foreign matter, robots with that can map tree-crop architecture, and ground-breaking autonomous weed identification and eradication capabilities,” he says.

“Through the Horticulture Innovation Centre for Robotics and Intelligent Systems, this research will be further expanded to investigate capabilities such as automated crop forecasting to predict the best time to harvest and ground penetrating radar sensors to measure things like soil water content.

horticulture innovation
RIPPA trailing precision spray and foreign object identification technology on a farm in Gatton QLD. Credit: Hort Innovation and USYD

“Importantly through our latest work, which is funded through vegetable industry levies and funds from the Australian Government, we are looking at identifying commercial partnerships with the aim of making these new technologies accessible to growers. The development of horticulture technology standards and policies to meet regulations will also be a focus.

“This centre will give current and emerging generations of growers and agri-scientists the resources they need to develop their ideas for the benefit of the industry, and all Australians.”

Lloyd says Horticulture Innovation Australia is delighted to be working with the University of Sydney to achieve results for Australian growers.

This information on the new Horticulture Innovation Centre was first shared by Horticulture Innovation Australia on 6 October 2016. Read the original media release here.

robots

Blue technology revolution

Featured image above: Humanoid robots, like Ocean One, may soon replace human divers in carrying out deep or dangerous ocean research and engineering tasks. Credit: Osada/Seguin/DRASSM

An industrial revolution is unfolding under the seas. Rapid progress in the development of robots, artificial intelligence, low-cost sensors, satellite systems, big data and genetics are opening up whole new sectors of ocean use and research. Some of these disruptive marine technologies could mean a cleaner and safer future for our oceans. Others could themselves represent new challenges for ocean health. The following 12 emerging technologies are changing the way we harvest food, energy, minerals and data from our seas.

1. Autonomous ships

Credit: Rolls-Royce

You’ve heard of driverless cars – soon there may be skipperless ships. Ocean shipping is a $380 billion dollar industry. Like traffic on land, ocean traffic is a major source of pollution, can introduce invasive species, and even causes ocean road-kills. For example, over 200 whales were struck by ships in the past decade. Companies like Rolls Royce envision autonomous shipping as a way to make the future of the industry more efficient, clean and cost-effective. Skipperless cargo ships can increase efficiency and reduce emissions by eliminating the need for accommodation for crew, but will require integration of existing sensor technology with improved decision-making algorithms.

2. SCUBA droids

Credit: Osada/Seguin/DRASSM

SCUBA divers working at extreme depths often have less than 15 minutes to complete complicated tasks, and they submit their bodies to 10 times normal pressure. To overcome these challenges, a Stanford robotics team designed Ocean One: a humanoid underwater robot dexterous enough to handle archaeological artefacts that employs force sensors to replicate a sense of touch for its pilot. Highly skilled humanoid robots may soon replace human divers in carrying out deep or dangerous ocean research and engineering tasks.

3. Underwater augmented reality glasses

Credit: US Navy Photo by Richard Manley

Augmented and virtual reality technologies are becoming mainstream and are poised for enormous growth. The marine sector is no exception. US navy engineers have designed augmented vision displays for their divers – a kind of waterproof, supercharged version of Google Glass. This new tech allows commercial divers and search and rescue teams to complete complex tasks with visibility near zero, and integrates data feeds from sonar sensors and intel from surface support teams.

4. Blue revolution

Credit: InnovaSea

The year 2014 was the first in which the world ate more fish from farms than the wild. Explosive growth in underwater farming has been facilitated by the development of new aquaculture tech. Submerged “aquapod” cages, for example, have been deployed in Hawaii, Mexico, and Panama. Innovations like this have moved aquaculture further offshore, which helps mitigate problems of pollution and disease that can plague coastal fish farms.

5. Undersea cloud computing

Credit: Microsoft

Over 95% of internet traffic is transmitted via undersea cables. Soon, data may not only be sent, but also stored underwater. High energy costs of data centres (up to 3% of global energy use) have driven their relocation to places like Iceland, where cold climates increase cooling efficiency. Meanwhile, about 40% of people on the planet live in coastal cities. To simultaneously cope with high real estate costs in these oceanfront growth centres, reduce latency, and overcome the typically high expense of cooling data centres, Microsoft successfully tested a prototype underwater data centre off the coast of California last year. Next-generation underwater cloud pods may be hybridised with their own ocean energy-generating power plants.

6. New waves of ocean energy

Credit: Carnegie Wave Energy

The ocean is an enormous storehouse of energy. Wave energy alone is estimated to have the technical potential of 11,400 terawatt-hours/year (with sustainable output equivalent to over 400 small nuclear power plants). Technological innovation is opening up new possibilities for plugging into the power of waves and tides. A commercial project in Australia, for example, produces both electricity and zero-emission desalinated water. The next hurdles are scaling up and making ocean energy harvest cost-efficient.

7. Ocean thermal energy

Credit: KRISO (Korea Research Institute of Ships & Ocean engineering)

Ocean thermal energy conversion technology, which exploits the temperature difference between shallow tropical waters and the deep sea to generate electricity, was successfully implemented in Hawaii last year at its largest scale yet. Lockheed Martin is now designing a plant with 100 times greater capacity. Drawing cold water in large volumes up from depths of over 1 kilometre requires large flexible pipelines made with new composite materials and manufacturing techniques.

8. Deep sea mining

Credit: Nautilus Minerals

Portions of the seafloor are rich in rare and precious metals like gold, platinum and cobalt. These marine mineral resources have, up until now, lain mostly out of reach. New 300 tonne waterproof mining machines were recently developed that can now travel to some of the deepest parts of the sea to mine these metals. Over a million square kilometres of ocean have been gazetted as mining claims in the Pacific, Atlantic, and Indian oceans, and an ocean gold rush may open up as early as 2018. Mining the seafloor without destroying the fragile ecosystems and ancient species often co-located with these deep sea mineral resources remains an unsolved challenge.

9. Ocean big data

Credit: Windward

Most large oceangoing ships are required to carry safety sensors that transmit their location through open channels to satellites and other ships. Several emerging firms have developed sophisticated algorithms to process this mass influx of ocean big data into usable patterns that detect illegal fishing, promote maritime security, and help build intelligent zoning plans that better balance the needs of fishermen, marine transport and ocean conservation. In addition, new streams of imagery from nanosatellite constellations can be analysed to monitor habitat changes in near-real time.

10. Medicines from the seas

Credit: PharmaSea

The oceans hold vast promise for novel life-saving medications such as cancer treatments and antibiotics. The search for marine-derived pharmaceuticals is increasing in momentum. The European Union, for example, funded a consortium called PharmaSea to collect and screen biological samples using deep sea sampling equipment, genome scanning, chemical informatics and data-mining.

11. Coastal sensors

Image: Smartfin

The proliferation of low-cost, connected sensors is allowing us to monitor coastlines in ways never possible before. This matters in an ocean that is rapidly warming and becoming more acidic as a result of climate change. Surfboard-embedded sensors could crowd-source data on temperature, salinity and pH similar to the way traffic data is being sourced from drivers’ smartphones. To protect the safety of beachgoers, sonar imaging sensors are being developed in Australia to detect sharks close to shore and push out real-time alerts to mobile devices.

12. Biomimetic robots

Credit: Boston Engineering

The field of ocean robotics has begun borrowing blue prints from the world’s best engineering firm: Mother Nature. Robo-tuna cruise the ocean on surveillance missions; sea snake-inspired marine robots inspect pipes on offshore oil rigs; 1,400 pound crab-like robots collect new data on the seafloor; and robo-jellyfish are under development to carry out environmental monitoring. That ocean species are models for ocean problem-solving is no surprise given that these animals are the result of millions of years of trial and error.

Outlook

Our fate is inextricably linked to the fate of the oceans. Technological innovation on land has helped us immeasurably to clean up polluting industries, promote sustainable economic growth, and intelligently watch over changes in terrestrial ecosystems.

We now need ocean tech to do the same under the sea.

As the marine industrial revolution advances, we will need to lean heavily on innovation, ingenuity and disruptive tech to successfully take more from the ocean while simultaneously damaging them less.

– Douglas McCauley and Nishan Degnarain

This article was first published by World Economic Forum on 16 September 2016. Read the original article here.

World champions of RoboCup soccer return to Sydney

A team of Australian roboticists, who smashed their way to victory at the RoboCup world soccer championship in China for a second year running, return home on Monday and will be holding a media conference at UNSW.

The triumphant team of Australian roboticists who smashed their way to victory at the RoboCup world soccer championship in China – snatching the trophy for the second year in a row – return home on Monday and will be holding a media conference at UNSW.

The four-member UNSW team (and their four humanoid robots), who beat an elite German squad by 3-1 in a tense grand final, will be available to take questions at the media conference.

They will afterwards provide demonstrations of the robots in action in a special soccer pitch where the robots train. Also available will be video and high-resolution images of the robots and team members, as well as the team’s victorious finals match in Hefei, west of Shanghai in China, on 22 July. (Most of the team have been travelling on holidays since then.)

Event details 

RoboCup is an international competition of 300 teams from 47 counties that fosters innovation in robotics and artificial intelligence. The premier category is the Standard Platform League, in which squads compete on an indoor soccer court with robots operating entirely autonomously – with no control by humans or computers during the game. This year’s tournament was fought between Naos, 58 cm-tall humanoid robots that whose artificial intelligence and tactics were developed by young software designers and engineers.

RoboCup was founded in 1997 with the goal of developing a robot team good enough to beat the human champions of the FIFA World Cup by 2050.

You can download a map to the venue for the media conference here.

Wilson Da Silva

This article was first published by UNSW Australia on 5 August 2015. Read the original article here.

Connecting science with industry