Tag Archives: muru-D


Founders fuelled by STEM

As a full time angel investor and venture capital investor I spend a considerable amount of my time meeting with founders from all walks of life. Ten years back that group would have largely consisted of a few random, risk-taking entrepreneurs and a bunch of computer science grads punching out code. My, how times have changed.

In this current “Innovation Era” it seems the whole world is seeking to get digital and disrupt something. The backgrounds, skills and mindsets in the startup scene are now far more diverse… and what a huge asset that is to the local ecosystem and future of innovation in Australia.

Most comforting to me over the past few years has been the increasing number of founders I’ve encountered from some formal STEM background that’s not just computer science, and how they are putting their ideas to the test. Diversity of thinking, ideas and actions seems to be the DNA of a healthy ecosystem. If we are to create a vibrant, sustainable innovation ecosystem in Australia then we must promote this sort of risk taking through academia and into commercialisation programs.

On a recent tour of Silicon Valley with the current cohort of the muru D accelerator program from Sydney, I had the pleasure of spending time with the founders of astro-educational startup Quberider and underwater inspections company Abyss Solutions.

“It was a pleasure to see these young STEM professionals stand up, pitch and impress some of the world’s most experienced startup investors with their passion and ideas that have true global application.”

Solange Cunin launched Quberider while still studying a Bachelor of Science and Engineering at UNSW, majoring in aerospace, aeronautical and astronautical engineering. Quberider’s director Sebastian Chaoui is undertaking a Bachelor of Engineering and Mechatronics at UTS, majoring in robotics and automation engineering. Abyss Solutions founder Masood Naqshbandi has a Masters in Materials Chemistry and Photonics from the University of Sydney. His highly qualified team hold a number of PhDs and masters degrees between them.

It was a pleasure to see these young STEM founders stand up, pitch and impress some of the world’s most experienced startup investors with their passion and ideas that have true global application. Their diverse skills, intimate knowledge of their subject matter and practical “can-do” attitudes put them in great stead to impress. So did the experiences they shared visiting one of the leading hubs of global startups and innovation.

If we are to create a truly innovative society in Australia that can help make the world a better place, then we need to foster entrepreneurialism among the excellent talent from our leading universities. Support from corporate incubators and accelerators to share business acumen will further accelerate their success. Supportive global capital will surely follow.

Andrew Coppin

Director, Bardama Startup Fund, Affirmative Investments and Timezone Group International

Read next: Attila BrungsVice-Chancellor and President of UTS, sheds light on how we can equip new generations of graduates with the right skills to compete in a changing global market.

People and careers: Meet graduates and postgraduates who’ve paved brilliant, cross-disciplinary careers here, find further success stories here and explore your own career options at postgradfutures.com

Spread the word: Help to grow Australia’s graduate knowhow! Share this piece using the social media buttons below.

Be part of the conversation: Share your ideas on creating and propelling top Australian graduates. We’d love to hear from you!

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Australian Innovation Thought Leadership Series here.

Medical device could save lives

Medical device could save lives

An award-winning medical device could save lives. The ECGx/Medibase system, developed by the Medical Engineering Database Solutions (MEDS) team of students from RMIT University in Melbourne, is a groundbreaking technology used in ambulances to allow a patient’s electrocardiogram (ECG) information to be shared with doctors at the hospital in advance of the ambulance’s arrival, leading to more efficient care and improved patient survival.

Jaad Cabbabe, project leader for the MEDS team, explains that the “eureka” moment for the idea came during a discussion with a doctor who used to work in the emergency department at the Alfred Hospital in Melbourne. “The idea just clicked,” says Cabbabe.

“It offered a solution to a real problem that exists in hospitals and is not currently being addressed.”

Although ambulances in Australia use state-of-the-art ECGs with communication capabilities, the current technology doesn’t transmit patient data to doctors in advance of an ambulance’s arrival to hospital, which means doctors have to wait for vital patient information before they can formulate a diagnosis and treatment plan. Also, within hospitals ECGs are currently shared between doctors by fax or scanned photograph – methods that are neither efficient nor secure.

The ECGx/Medibase system transmits a patient’s ECG data to a central database, where medical professionals can access it, leading to a reduction in waiting times for diagnosis and treatment. The system has the capacity to save time, facilitate information sharing, improve consultations and decision-making, and allow doctors to more precisely target the needs of patients.

The ECGx/Medibase system is designed to be technology “agnostic”, or designed to to allow communication between the range of technologies currently being used by ambulances and hospitals.

The system won the prestigious Telstra University Challenge 2015: Connected World award in September. Cabbabe says the win has given the team a huge benefit through access to Telstra’s technical and commercial expertise and resources, helping them plan ahead, with the ultimate aim of commercialising the system. The team has also been invited to apply to muru-D, Telstra’s technology incubator, which provides upfront funds and state-of-the-art facilities for new technology start-ups.

The system is currently at the prototype stage, and requires further technical development before it can be considered for a field trial. “The next six months developing the working prototype will be key,” says Cabbabe. “But the real world application and the various [ECG] technologies we are proposing to work with is our biggest technical challenge.” The ECG technologies used in ambulances are not currently able to communicate with hospital systems, posing a technical challenge for the team.

Other challenges include navigating legal and regulatory hoops for medical devices, and passing their third year exams.

– Carl Williams