With bachelor degrees in civil engineering and science and a PhD in environmental sociology, Dr Briony Rogers is uniquely placed for her present research role. She’s tackling the technical and social challenges required to make our urban water systems more sustainable and resilient to the impacts of climate change, a growing population and increasing urbanisation.
As a civil engineer, Rogers spent five years working for private infrastructure services consultancy GHD where she was responsible for civil engineering design and project management on a range of water infrastructure projects both in Australia and Vietnam. She was passionate about sustainability, but recalls that by the time designs landed on her desk, most of the big decisions influencing sustainability and resilience had already been made.
Rogers decided to take on doctoral research at Monash University and investigate processes of social change in relation to sustainable infrastructure and technology. “I drew on my technical understanding, but with the recognition that to implement new approaches, social systems would have to change as well,” she says.
Now, as a Research Fellow for the Monash University Water for Liveability Centre and the CRC for Water Sensitive Cities, Rogers works with key stakeholders to design strategies and new methods to build the “social capital” required to transform the way we plan, design and manage our urban water systems. Rogers’ interdisciplinary background means she can act as a bridge between various stakeholders, from engineers and ecologists to landscape architects, as well as organisations such as local councils, state government departments and private enterprise.
The big picture goal, Rogers says, is to transition to “water sensitive cities”, in which decentralised, low energy technologies are integrated with centralised networks to build resilience in the face of an unpredictable future. This requires thinking outside the square, she adds, and recognising that water infrastructure “is not just a pipe underground”, but a valuable part of the urban landscape, providing benefits that can enhance the liveability of a city. She gives an example of green cities that are irrigated using harvested stormwater to reduce extreme heat during heatwaves.
“We’ve been building our water systems in large-scale, centralised modes for a couple of hundred years, so it is very difficult to change our approach,” Rogers says. “That’s partly why this type of research is so important – to understand what is locking us into traditional systems, so we can overcome those barriers to support innovation not just in rhetoric, but in practice.”
Rogers was this year selected by the International Social Science Council to be one of 20 early-career World Social Science Fellows in the area of sustainable urbanisation.
– Gemma Chilton