Tag Archives: brain

Machine learning to help prevent seizures and monitor patients

The researchers will now use a $1 million Australian Government grant awarded to Australian company Anatomics to develop a ‘smart helmet’ to monitor brain swelling in stroke and traumatic brain injury patients

Researcher at CSIRO’s data and digital specialist arm, Data61, Dr Umut Guvenc said traumatic brain injuries affect over 69 million people worldwide  , including 700,000 Australians  , with one in three likely to develop chronic epilepsy due to the high frequency of seizures.

“Monitoring brain activity post-surgery is especially critical to a patient’s recovery as seizures can regularly occur, often leading to patients developing epilepsy,” Dr Guvenc said.

“These seizures are often difficult to detect, with current monitoring techniques only able to be used in a hospital using bulky devices for less than 24 hours, providing a brief snapshot of brain activity during that time only.

“This new method can continuously monitor brain activity wirelessly, allowing the patient to be mobile, comfortable and more socially active.” The machine learning in the devices was trained using data from Monash University, and can detect even the smallest seizures before transferring the data securely from the helmet to the healthcare practitioner.

During normal brain activity, the implants stay in standby mode to conserve energy while monitoring brain activity for seizures, and are reactivated when a seizure is detected, sampling the signal at higher resolution.

Senior Research Engineer at Data61, Peter Marendy, said the project aims to use the insights from the helmets to develop a ‘brain machine interface’, enabling clinicians to monitor brain function in real-time.

“Information provided by the implants can be used to inform clinicians about the patient’s brain activity and inform decisions regarding the administering of drugs,” Mr Marendy said.

“The combination of brain swelling, surgery timing and patient outcome data will enable further study on the ideal time to perform a reconstructive cranioplasty to achieve the best patient outcome – research that will ultimately influence future medical decisions.”

Dr Ganesha Thayaparan is R&D Fellow at Anatomics Pty Ltd  . “Anatomics’ ongoing collaboration with CSIRO has produced a number of medical world-firsts, including additively manufactured patient-specific titanium implants,” Dr Thayaparan said.

“The ‘smart helmet’ project builds upon our existing SkullPro technology to develop a remote sensing platform to monitor the injured brain following a decompressive craniectomy.”

The development of these technologies was enabled by CSIRO’s Probing Biosystems Future Science Platform, which provided initial funding to support this cutting-edge research. The work also brought together cross-domain experts from across CSIRO including energy and mineral resources researchers who are developing the micro batteries used in the implants.

For further information and project updates, or to collaborate, please visit Project: Brain Implants.

First published by CSIRO.au

Brain teaser: 3D-printed ’tissue’ to help combat disease

The brain is amazingly complex, with around 86 billion nerve cells. The challenge for researchers to create bench-top brain tissue from which they can learn about how the brain functions, is an extremely difficult one.

Researchers at the ARC Centre of Excellence for Electromaterials Science (ACES), based at UOW’s Innovation Campus, have taken a step closer to meeting this challenge, by developing a 3D-printed layered structure incorporating neural cells, that mimics the structure of brain tissue.

The value of bench-top brain tissue is huge. Pharmaceutical companies spend millions of dollars testing therapeutic drugs on animals, only to discover in human trials that the drug has an altogether different level of effectiveness. We’re not sure why, but the human brain differs distinctly from that of an animal.

A bench-top brain that accurately reflects actual brain tissue would be significant for researching not only the effect of drugs, but brain disorders like schizophrenia, and degenerative brain disease.

ACES Director and research author Professor Gordon Wallace (pictured above with Rodrigo Lozano and Elise Stewart) said that the breakthrough is significant progress in the quest to create a bench-top brain that will enable important insights into brain function, in addition to providing an experimental test bed for new drugs and electroceuticals.

“We are still a long way from printing a brain but the ability to arrange cells so as they form neuronal networks is a significant step forward,” says Wallace.

To create their six-layered structure, researchers developed a custom bio-ink containing naturally occurring carbohydrate materials. The custom materials have properties that allow accurate cell dispersion throughout the structure, whilst providing a rare level of protection to the cells.

The bio-ink is then optimised for 3D-printing, and developed for use in a standard cell culturing facility without the need for expensive bio-printing equipment.

The result is a layered structure like brain tissue, in which cells are accurately placed and remain in their designated layer.

“This study highlights the importance of integrating advances in 3D-printing, with those in materials science, to realise a biological outcome,” says Wallace.

“This paves the way for the use of more sophisticated printers to create structures with much finer resolution.”

The research, funded through Wallace’s Australian Laureate Fellowship, is published in Biomaterials

This article was first published on 3 August 2015 by the University of Wollongong. Read the original article here.