Tag Archives: Low

Fresh opportunities

THE WAY WE DESIGN BUILD AND MANAGE our urban spaces is undergoing a transformation that’s almost unprecedented in scope. We’re reimagining our cities and urban precincts in the face of changing climate, energy and security issues and a growing appreciation for sustainability principles. Individuals and organisations from a broad range of disciplines will need to play a role.

Dr Deo Prasad, the CEO of the CRC for Low Carbon Living (CRCLCL) and a Professor of Sustainable Development at the UNSW Faculty of Built Environment, personifies this multidisciplinary approach. Originally trained as an architect, Prasad obtained a master’s degree in science and program management and completed a PhD in thermal heat transfer in buildings.

The CRCLCL is a $48 million centre, announced in November 2011, of which the Commonwealth contribution is $28 million over seven years. The centre brings together property developers, planners, engineers and policy organisations with Australian researchers with an overarching aim of reducing carbon emissions by 10 megatonnes in the next five years – the equivalent of taking 2.3 million cars off the road each year. The CRCLCL research will bring about $680 million worth of benefits to the Australian economy over 15 years.

“Our focus is on enabling Australian industries and particularly small to medium enterprises to benefit from the new products, technologies, tools and systems. We’re trying to ensure the built environment sector can capture the benefits from going low carbon,” says Prasad.

Malay Dave, a PhD candidate at the CRCLCL and UNSW Australia Built Environment, is researching sustainable prefabricated or modular housing, with an end goal of developing a framework for “whole-systems design”. This approach considers the house as an energy system with interdependent parts, each of which affects the performance of the entire system.

“The need for housing that is both sustainable and affordable is a major issue globally,” he says. “Prefabrication, or off-site construction, offers huge opportunities in delivering environmental sustainability and economic affordability in buildings.”

Dave has a $95,000 scholarship funded by the CRC, which offers $30,000 per year stipends with a total of 88 scholarships available for the current funding period of seven years.

The CRCLCL is also working in parallel with the CRC for Polymers (CRC-P) to coat building cladding materials such as steel or glass with the next generation of solar cells – enabling light energy capture and distribution throughout a building.

Researchers at the CRC-P are in the process of developing these advanced materials for the next generation of solar cells for which the CRCLCL is investigating large-scale commercial applications (see page 7).

CEO Dr Ian Dagley says the CRC-P has a philosophy of putting postgraduate students on the most groundbreaking projects. “We want them to be doing work of high academic interest using state-of-the-art materials and techniques so they can publish in high-profile international journals,” he says. With two-and-a-half years of funding remaining, the CRC-P has filled all its 11 postgrad scholarships to the value of $1,060,000.

Other projects at the CRCLCL include researching innovative building materials such as concrete with reduced embodied carbon. They are also developing tools and collating data to measure the impact of urban developments in terms of water, waste, energy and materials.

The CRCLCL also collaborates with the CRC for Water Sensitive Cities for this, “developing design ‘charrettes’ [intense design workshops] to ensure development goals for water and carbon aspirations are well-established,” explains Prasad.

The third main CRCLCL research program involves community engagement. “Technology or design in itself won’t fix the problem,” says Prasad. “We need to look at what resonates with communities – why they take up certain initiatives and not others.”