Tag Archives: open data

7 questions with Frankl Open Science founder

Frankl founder, Dr Jon Brock with neuropsychologist and dementia researcher, Professor Greg Savage.

Vast amounts of scientific data are collected every day, but a lack  of data sharing among researchers is resulting in a major research replication crisis. Luckily, startup Frankl Open Science,  the world’s first blockchain-integrated open science platform, has stepped up to address this major opportunity cost.

The platform integrates data sharing into the scientific workflow, allowing for automated, trackable data sharing. Frankl Open Science is the brain-child of cognitive scientist Dr Jon Brock and blockchain guru Peter Godbolt, who set out to create it easier and more rewarding for time-poor scientists to share data. We sat down with Jon to find out about the genesis of Frankl, the startup’s biggest successes and challenges and how open science will benefit the global research community.

1. What’s your career background?

I’ve spent most of my career in academia. I did a PhD in Psychology studying a rare genetic condition called Williams syndrome. I’ve also done research on Down syndrome, dyslexia, and autism.
I worked as a post-doc at Bristol and Oxford Universities in the UK and then spent 10 years at Macquarie University in Sydney where I was an ARC Australian Research Fellow in the Department of Cognitive Science and a Chief Investigator at the ARC Centre of Excellence in Cognition and its Disorders.

2. How did you first identify the business gap that led you to create Frankl?

Frankl is really the intersection of two ideas that arose from my experience as a researcher.
Back in the early 2000s, I was working on a couple of projects with kids with Down syndrome and then kids with autism. I noticed that when I gave them tests that involved using a touchscreen, they seemed to perform much better than they did on more traditional pen and paper tests we were using. It was as if the touchscreen was getting at their true abilities. And so when iPads came out and parents started saying that they were “unlocking” their kids’ abilities, it seemed obvious to me that iPad-based cognitive assessments were the way forward – not just for autistic kids but for everyone.
At the same time, I’ve been getting increasingly involved in the world of open science. Open science is really just the idea that science works best when it’s done transparently. But there are a number of barriers to open science – one of which is that it takes time and effort to do well and there’s actually very little incentive for researchers. For example, the time you spend curating your data, making sure that other people can find it, make sense of it, and actually use it, that’s time that you’re not doing other things like writing papers and grant proposals. A couple of years ago I was talking to a friend, Alex Holcombe, who’s a professor at the University of Sydney. He told me how he programmed his experiments so that all the data curation was effectively built into the data collection. Most people don’t have Alex’s technical skills. So our idea was to build all of these data curation capabilities into the apps we’re making so that anyone can be an open scientist and can share their data in a way that’s meaningful and useful.
It’s good for researchers, but it’s also good for the organizations who are funding research, whether that be government, philanthropy, or business. Ultimately, they want the best return on their investment in science. And giving scientists the tools they need to collaborate and share their data more openly is one of the best ways of achieving that return.

3. What have been the biggest challenges in your first year?

For me personally, the biggest challenge has been getting my head around the technology side of things as well as the business and legal aspects. Frankl co-founder, Peter Godbolt, has been working in tech for a long time – in web and app development and then more recently in blockchain and cryptocurrencies. There are huge opportunities in bringing together the worlds of science and tech, but it’s been really important to make sure we’re not talking past each other or proposing solutions that make sense in one world but not in the other.
This is all made even more challenging by the rapid changes in the tech space over the last year. There’s a lot of uncertainty. For example, we’re using blockchain as part of our solution, creating a supply chain from raw data to scientific paper. When we started Frankl in January, there was a huge amount of excitement about blockchain and cryptocurrencies. Since then, that the bubble has burst. In the long run, that’s a good thing. It means that the projects that survive are going to be the ones who provide a genuine use case for the technology and who actually build products that people want.

4. What’s been the best part and your biggest successes?

The most exciting part for me has been really getting to know some of the tech and then thinking about how that can be applied to solve problems in science. One of the things we’ve been saying all along is that a lot of the solutions already exist. We don’t need to reinvent the wheel. I really believe that.
Probably our biggest success so far was getting an Open Research Fund grant from the Wellcome Trust. The grant was for a simple memory test designed by our collaborator, neuropsychologist Professor Greg Savage, for use with patients with Alzheimer’s and other forms of dementia. But it incorporates lots of features that make it easy for people to store their data securely and share with the right people, both in a research context and as a clinical tool. There were 96 applications and I think just 8 awards, so it was really fierce competition. It’s allowing us to move quickly now on building the software. But it’s also really validating for us to have an organisation like Wellcome say that they believe in what we’re doing.

5. What is your advice for people working in research and looking to move into a startup?

If you’ve got a good idea then it’s definitely worth thinking about a startup. Academics are often quite dismissive of commercialisation – we think of science as this noble pursuit of knowledge and the idea of making money is somehow dirty or a distraction. But sometimes, turning an idea into a business is actually the best way to move things forward and translate an idea or finding into something that actually makes a difference to people’s lives. It might also be more sustainable in the long run. The problem with relying on research grants is that eventually they run out and all your hard work can go to waste if there’s no continuing support. So having a sustainable business model can be a good way of ensuring that you have the most immediate but also the longest lasting impact.

6. How can open science benefit the science research community as a whole?

One way that open science benefits the research community is by giving greater trust in research findings. Science works because you don’t have to trust scientists – you trust the evidence, the data – and because you know how the data were collected and analysed. So the more open it is, the less you have to take on trust. There’s a lot of concern at present about the trustworthiness of scientific findings. When people try and replicate other people’s studies, they often get quite different results. Conducting research more openly is one way of addressing those concerns.
But there’s more to open science than that. Isaac Newton famously talked about “standing on the shoulders of giants”. Science isn’t something that can be done in isolation. We gain new knowledge more quickly if we can build on other people’s work – their ideas, their methods, their data. So open science means more rapid discoveries as well as more reliable findings. For example, we’re increasingly seeing major discoveries being made by people who haven’t actually collected the data themselves but have re-analysed existing data that other researchers have shared openly.
That’s why the organisations that fund research, particularly the big philanthropic organisations like the Gates Foundation and the Wellcome Trust are really pushing researchers to behave more openly. Open science means that they get the biggest knowledge return on their investment in scientists.

7. What does the next 2 years look like for Frankl?

Our priority right now is to push forward with the development of our prototype application. Once people have something concrete – an app they can download and they can run and see where all the data is going – it becomes easier to imagine how the same concept and the same principles can be applied to other scientific contexts.
It also means that we can easily repurpose the code from that first app to build other apps that test slightly different things. That’s where my academic connections are really useful. We’ve got a queue of researchers with apps that they want building. And so in parallel to the app development, we’re busily building relationships with research organisations whose goals align with our own and who see value in Frankl for their researchers. There are lots of opportunities here for cooperative research partnerships, linkage grants and so on.
We’re also increasingly thinking about the direct clinical applications of what we’re doing. The solutions we’re creating for researchers – user-friendly assessment apps, secure data management and permissioned data sharing – are also directly applicable to clinical contexts. For example, parents of kids with disabilities tell us that one of the real challenges they face is getting bounced from one specialist to another, with very little communication between them. Having an app that facilitates sharing of assessment results between clinicians and parents could be incredibly powerful – and empowering.
In the longer term, we’re thinking about the bigger picture in science. It makes sense for us to focus initially on psychology and cognitive science because that’s where we have expertise and we know there’s a big market for cognitive tests. But the general principles of making open science part of a frictionless scientific workflow is something that translates to lots of different areas of research. So we’re always very happy to speak to people in any area of science, tech, or business who can see broader applications for what we’re doing.
Learn more about Frankl Open Science  on their website, Twitter, Facebook and  Bitcoin Talk Forum.

JCU scientists are mangrove CHAMPs

JCU scientists are mangrove CHAMPs. A team at JCU is mapping tidal wetlands via photography from air, sea, land and space. The results will feed into their Coastal Habitat Archive and Monitoring Program (CHAMP).

The study is being done on behalf of Gladstone Ports Corporation and involves indigenous rangers from the Gidarjil Development Corporation and local community volunteers.

It will monitor the condition of shorelines, specifically tidal wetlands like mangroves, saltmarsh and saltpans, in the Port Curtis and Port Alma region as part of the company’s Environmental Research and Monitoring Program.

JCU scientists are mangrove CHAMPs
A ranger from the Gidarjil Development Corporation with a volunteer. Image courtesy of JCU.

JCU’s Dr Norm Duke says the result will be a detailed assessment of tidal wetland habitat and shoreline stretching from the Fitzroy River mouth east of Rockhampton to Rodds Bay north of Seventeen Seventy. It will include river estuaries and shoreline and will detail coastal habitat extent, condition and change over time.

He says the data will be a boon for scientists, environmental managers and those who like to fish. With a unique view from helicopters and boats.

“We can show things you can’t see from a satellite. When you look straight down you can’t easily see tree height or dieback to the same extent. From the air and from boats, you get an oblique and lateral view that allows you to see processes and indicators of change over larger areas, like impacts by storms, flooding, sea level rise, pollution and other damage.”

 

He says eventually the system would mature to the point where a user could select a location and see a picture of that place and also see how it had changed over time.

“At the moment, we don’t have smart ways to systematically evaluate what is happening to our shorelines. And, big changes are expected, as shoreline development expands, with pollution events, coupled with severe storms, sea level rise and other aspects of climate change. We really need to know how our coastal environments are changing.”

Duke says mangroves and saltmarshes were critical parts of the shoreline environment. “Three quarters of seafood species depend on tidal wetlands, and mangroves have a huge role in reducing storm surges, flooding and cyclone impacts. They store five times more carbon than other forests, and trap up to 80% of land-based run-off.”

They are also an early warning system. “If there are changes in coastal environments, mangroves are going to show them. So, healthy mangroves mean healthy upstream catchments, and healthy seagrasses and corals,” he says.

The data will become part of an open data archive, available free of charge to anyone who can make use of it. Duke says the plan is to eventually map and risk evaluate Australia’s entire coastline in the same way.

This article was first published by JCU on 5 November 2015. Read the original article here.