Tag Archives: gemaker

Risky business

To build research-industry partnerships for successful technology transfer, Step 1 is to develop a culture and practices that promote partnership and Step 2 is to build a strong foundation for your partnership. At this point, you (a research organisation and a commercial company) have established a relationship based on trust and understanding, and are on the verge of serious commitment.

Researchers should be aware that collaboration with Company A may restrict you from jumping into bed with Company B, particularly if A and B are competitors. In business as in love, consider whether monogamy suits you before beginning a long-term partnership.

It’s hard to imagine D-I-V-O-R-C-E when you’ve just fallen in love, but any country-and-western singer and I would recommend that, before you make any vows, you should invest in couples counselling and a pre-nuptial agreement. It’s time to…

Manage risk (Step 3)

A company considers spending on research to be an investment in product or service development. Any investment carries risk, but investing in experimentation is high risk: the research may not result in the outcome desired by the industry partner, or it may take longer and cost more than anticipated to achieve that outcome.

An example from my experience at Cochlear was a surgical tool that showed promise in laboratory testing, but trials in a simulated operating theatre revealed that it was impractical for routine surgical use. Unfortunately, this issue could not be resolved, so the project did not proceed further.

The company’s decision-makers will be held accountable for the performance of their investment and so should seek to minimise or mitigate the associated risk. The research partner should share that aim, if they want a long-term relationship with the company, or a good reputation in the industry.

Risk management is hard for early-stage, ground-breaking research where the outcome is unknown and likelihood of failure is high. It’s easier for late-stage research such as product prototyping, especially where the new product’s capabilities can be demonstrated using standard components in simulated conditions.  For instance, a low-risk project to develop an augmented-reality surgical training system involved the novel integration of existing software and hardware.

Some of the most useful risk management strategies are:

  • seeding the project team with people who have the experience and skills to straddle the industry/research divide
  • nominating a divide-straddling project manager with authority to set and revise the scope, schedule and budget
  • breaking the work into small chunks with shorter timeframes
  • clearly defining roles, responsibilities and deliverables
  • linking the achievement of milestones to payments, and
  • monitoring progress with regular project reviews and making timely decisions when issues emerge.

Expect and plan for administrative overheads, including legal and reporting costs. Best practice is to establish an umbrella agreement that covers the ‘big picture’ of the partnership, with a series of smaller agreements covering specific projects. The latter should use a project management framework to define each project’s scope, resources, timeframe, deliverables and milestones, and the team members’ roles and responsibilities.  If these administrative aspects of collaboration are treated with contempt, stakeholder issues can escalate rapidly, leading to relationship breakdown.

In some industries, such as medical technology and pharmaceuticals, legal compliance is an important consideration in collaboration, requiring additional documentation, such as a formal contract including a detailed scope-of-work. In my experience, the researchers – usually university academics – with whom Cochlear collaborated were often also medical professionals involved in purchase decisions for their practices.  A contract and scope-of-work demonstrates that any payments are for legitimate research and not an inducement to do business with the company.

Often it’s legal and commercial issues that are the main hurdles in establishing research-industry collaboration. Companies want to own any intellectual property (IP) generated through the collaboration to give them freedom to operate – for example, to use the research results to support the product claims – and to gain advantage over competitors. A company will not participate in a partnership if the ownership of the relevant IP is complicated, or likely to be contested. Legal assignments or similar agreements can simplify IP ownership.

Once you’ve done all you can to manage risk, feel free to release the doves, scatter the rose petals and process down the aisle. But if you hope to see cobwebs grow on your unused pre-nup, remember that the happiest marriages are those supported by the extended family on both sides. That’s why my next post will be about using your teams to best effect (Step 4). My final post in this series will be about measuring your impact (Step 5), because every marriage has a legacy. Watch this space.

research-industry collaboration

– James Dalton, gemaker

Click here for information about gemaker’s industy engagement training program for researchers.

industry-research collaboration

Laying the foundations

In response to Innovation and Science Australia’s recent performance review of Australia’s innovation, science and research system, I am producing a series of posts about improving industry-research collaboration, to share lessons from my experience leading collaborations for Cochlear, as well as recent research into best practice.

This blog series describes five steps to build industry-research partnerships for successful technology transfer. If you missed it, you can learn about Step 1 – develop a culture and practices that promote partnership – in my previous post. When you’re ready, here’s Step 2…

2. Build a strong foundation for your partnership

This stage of the potential collaboration follows the introduction and is about getting to know each other and building trust and understanding. These intangible assets take time to develop and are essential for a positive, productive relationship. Therefore, spending time in regular contact with potential partners, especially face-to-face, is critical and will pay dividends.

While informal meetings help potential collaborators get to know each other at a human level, face-to-face time should not be entirely unstructured. Every interaction should work towards answering two critical questions about motivations and expectations:

  • What does the company hope to achieve through the industry-research collaboration?
  • What does the research organisation seek to accomplish? 

Answering these questions will minimise the risk of disappointment and conflict later.  Also, when the tech transfer office and other administrators step in to draft the contract, having a clear, shared understanding of the purpose of the collaboration will simplify their negotiations. It’s useful to have these parties meet face-to-face as early as possible, so that they have time to build empathy too.

At Cochlear, when my colleagues and I met face-to-face with potential research collaborators, we planned an agenda in advance, identifying the issues we needed to discuss. We also spent time over lunch or dinner getting to know each other personally.

When members of the research team visited our office to learn more about Cochlear’s operations, we invited them to explain their research interests, achievements and experiences to all staff in a lunchtime seminar. These interactions helped both parties and their wider organisations develop trust and understanding.

Industry-research collaboration brings a sudden injection of new colleagues. Before commitment, each party should understand the strengths and weaknesses of their potential co-workers, and what they would contribute to the collaboration, i.e:

  • Who is in each team and what is their role?
  • What is each team member’s experience and expertise? 
  • How does each team measure up against their peers and competitors?
  • Has either team ever collaborated with others on the opposite side of the industry-research divide before? If so, what was the outcome?

As companies need to keep a watchful eye on their competitors, while sniffing out new market opportunities, they will also ask the research team the following questions:

  • Where is the science heading and on what timeframe?
  • What are the critical questions that remain unanswered in the field and what will it take to answer them?
  • What do the researchers know about any relevant industry collaborations involving their peers?

One of the best ways to understand technological trends and the R&D strategy of competitors is by analysing their patenting and publishing activities.  At Cochlear, we readily shared knowledge of competitors’ activities with our research collaborators, so they could be our ‘eyes and ears’ in the research sector.

Potential collaborators must discuss the following:

  • What problem are we seeking to solve? 
  • Who are the end users / customers and how can we improve value for them?
  • What are our time and budget constraints and what is achievable within them?

This phase of the industry-research collaboration is the time to identify any flaw in the research direction. In one case in my experience, the research had merit in its aims, but the proposed solution was impractical. Cochlear’s engineering expertise redirected the research, leading to a significant leap in the field and demonstrating the benefit of the collaboration.

By taking time: to build a personal relationship based on trust; to understand each other’s strengths and weaknesses; to share information about threats and opportunities; to nail down the problem and how it may be solved practically; and above all, to clarify the expectations of each party; collaborators will lay down a solid foundation on which to build successful commercialisation projects.

The next steps in best practice industry-research collaboration for technology transfer are:

  1. Manage risk
  2. Use your teams to best effect and
  3. Measure your impact

To learn more about these, please watch this space for subsequent posts.

– James Dalton, gemaker

research-industry collaboration

Research industry collaboration

Research-industry collaboration guide part 1

Innovation and Science Australia recently released its performance review of Australia’s innovation, science and research system, finding that while we’re above average at creating knowledge, we’re poor at applying and transferring it, so our researchers’ wonderful innovations frequently fail to (a) improve lives in the real world, and (b) earn a return on our nation’s significant investment in research.

There’s often a huge crevasse between research organisations, such as universities, and commercial companies, in any industry: a gap in understanding and a potential grave for hopes and dreams. Over a couple of decades of product research, development and commercialisation in international markets, I have crossed that crevasse many times.

For Cochlear, I led ten significant collaborative agreements and participated in five others, involving more than 25 research organisations around the world. Cochlear’s annual R&D budget was around AUS$90 million, or up to 17% of sales.

I have insights to share about building bridges across the research-industry gap for mutual advantage and to benefit society. This is the first in a series of posts about improving research-industry collaboration, in which I will share lessons both from personal experience and recent research into best practice.

Whichever side you’re starting from, below are five steps to build research-industry partnerships for successful technology transfer. In this post, I have focused on the first step. I will explore the other steps in greater detail in subsequent posts.  

1. Develop a culture and practices that promote partnership

Successful research-industry collaboration can often be attributed to executive members of a research organisation who understand business, or have worked in industry. They can empathise with potential industry partners, promote research-industry collaboration by being effective champions and mentors in their own organisation, and provide the continuity in strategy and resourcing needed to maintain a partnership.

Senior businesspeople with a research background can similarly build bridges from the industry side. For example, in my experience, it was much easier to establish research-industry collaboration when surgeons with whom Cochlear had a commercial relationship also had an academic role at a university.

If you’re not at the top of your organisation, and can’t find a senior bridge-builder to mentor you and champion your cause, there’s still much you can do to establish productive research-industry collaboration, even from a cold start.

If you’re a researcher, you can find potential industry partners in the sector/s relevant to your research, and start to understand the problems they need to solve, via: industry conferences; company websites and annual reports; LinkedIn profiles and posts; and other business media, including blogs, etc. If you’re from industry, use similar channels devoted to academic and research organisation communications to seek out the leading experts in relevant areas.

The collaborations I developed for Cochlear had varied origins, e.g: a conversation at a conference; a university actively seeking collaborators to achieve its vision of being at the bleeding-edge of technology; an existing collaborator recommending another researcher who had the expertise we needed; mutual friends introducing me to a researcher because they knew about our shared interests; a local sales team developing a relationship with a university on which I built.

However you find them, when you meet a potential partner, ask questions and listen carefully to the answers. How does the company serve its customers and what stands in the way of improving the customer experience? How might the researcher shine a light on, or solve the company’s problems, or even open new markets for the company?  

Be prepared to invest significant face-to-face time getting to know each other on a human level and building trust and understanding. Research-industry collaboration is usually seeded by mutual connections and personal contact, and it only ever grows with shared interests and values.

2. Build a strong foundation for your partnership

Once the willingness to work together has been established, a deeper conversation is required to define the problem/s you are best positioned to solve together, the nature of the relationship, and the benefits each party could expect from it.

3. Manage the risk of your research-industry collaboration

A company considers spending on research an investment in product or service development, but research can be speculative and may not result in the outcome desired by the industry partner, so risk-mitigation strategies are essential.

4. Use your teams to best effect

By encouraging broad participation within both organisations, across a range of disciplines, and including customers or end-users, you can ensure that the project is solving real and important problems, the solution/s will be adopted, and the mutual benefits of the partnership fully realised.

5. Measure your impact

So that the value of the collaboration to each partner can be appreciated, it’s important to measure its impact on the customer experience as well as each party’s bottom lines.

To learn more about Steps 2–5 of research-industry, please watch this space for subsequent posts.

– James Dalton, gemaker

Click here for information about gemaker’s industy engagement training program for researchers.

research-industry collaboration

With an engineering background, James combines strategic marketing mastery and product development expertise, derived from decades of experience with leading global companies, especially Cochlear. In 2010, he won the Engineers Australia Design Excellence Award and the Red Dot Award for Product Design. He is named as the inventor on six patents. His current role as Commercialisation Manager with gemaker is to support diverse clients – researchers, inventors, startups and expanding businesses – through the many stages of commercialisation, including idea validation and protection, industry engagement, funding acquisition, product development, and marketing.

gemaker

Sowing the seeds of technology transfer

Originally I trained as a chemist, but recently I’ve been thinking about the commercialisation of research outcomes – our area of expertise at gemaker – in botanical terms. At the risk of sounding like hippie Neil from ‘The Young Ones’, I’ll explain by asking you to consider the timeless wonder of a seed…

The seed represents a new idea, resulting from years of work by researchers in a university or similar institution. Given the right conditions, the seed will grow into an entirely new variety of plant. The innovative ideas of researchers have the potential to improve our lives in myriad ways, so the metaphorical plant could be a new source of food or medicine, or it might produce an exquisite perfume, or superior wood.

Having created a seed with wonderful potential the researcher needs someone like a farmer, to sow the seed and grow it, producing a bumper harvest. In other words, the researcher needs an industry client.

Like a farmer, the industry client has customers to please, and if customers want crisper apples, the farmer won’t waste time and money cultivating redder roses. The wisest researchers engage with industry clients to learn about market problems and demands before commencing R&D, then create seeds to meet needs.

To reach the targeted market, innovations need funding like plants need water – and more than just a drip feed. Without adequate funding for pest control (IP protection), viable mutations (prototyping), taste testing (beta testing) the researcher’s seed will never grow to fruition. It may look like a plant that’s been sitting at the supermarket for weeks losing value as it dries up and dies.

How do customers like them apples?

With funding, innovators can prove their concept: how do customers like them apples? Beta testing delivers feedback to guide product or service refinements before market entry, as well as creating an opportunity to acquire valuable early-adopter testimonials for marketing purposes.

To grow tall, new products and services need the sunlight of strategic marketing to shine on them. In the energising glow of a strong campaign, online and in traditional media, the innovation will thrive. With effective marketing, yields are maximised; without it, even the greatest innovations shrivel and die.

We do our best to help innovators achieve their optimal commercial outcome, whether this is a spin-off from a research organisation, growing sales of the product or service, licensing agreements, or sale of a business. Like anything worthwhile, the commercialisation process takes time. Few innovators achieve ‘overnight’ success, but it’s possible: you can produce strawberries in just two months. If you plant an apple tree, it takes six to ten years to bear fruit.

Like farming, commercialisation is challenging, and we all depend on it being done well. Better research-industry engagement, enhanced professionalism in technology transfer, supportive government policies and improved funding strategies will all help to turn more of our researchers’ discoveries into new Australian industries, achieving a better future for us all. To quote the wisdom of Neil: ‘This self-sufficiency thing really is amazing.’

How does gemaker help?

Gemaker helps researchers to:

• Match their research to commercial applications
• Find industry partners
• Source consistent commercialisation funding
• Identify how to best protect their intellectual property, and
• Sell their wonderful seeds so they can grow to fruition for everyone’s benefit

We keep an eye on the sky (we study global market trends and government policy changes), searching for rainclouds (grants and other sources of funding) that could hydrate seedlings (spin offs and startups). If necessary, we’ll dig an irrigation channel and perform a rain-dance (to attract angel investors or venture capitalists).

– Natalie Chapman

STEM work experience

STEM work experience exciting the next generation

Featured image above: Nat Chapman recently welcomed a year 10 STEM work experience student, Isabella, to gemaker

Think back to your formative years. Was there an experience that inspired you follow the career path you did? Or a person who made a difference in the choices you made?

If we truly want to attract the brightest minds to science and technology, STEM companies have a responsibility to inspire the next generation of innovators.

We have a responsibility to give opportunities to high school and university students in the form of STEM work experience and access to our staff.

And a responsibility to make those opportunities genuine, inspiring experiences – not just something to tick a box.

A week in the life of gemaker

When a work experience student came knocking on gemaker’s door, we had one warning for her – we don’t do boring.

Photocopying was off the cards.

Instead, she spent a busy week meeting researchers, assisting with events, attending client meetings and working on projects that gave her real insight into the world of research, commercialisation and start-up culture.

In a single week, gemaker’s work experience student:

  • attended the AGM of an ASX-listed mining company and spoke to shareholders and directors;
  • watched researchers training in how to pitch to industry;
  • toured a university robotics lab;
  • filmed scientists with a videographer;
  • visited a start-up technology company;
  • went to a business meeting with a potential client;
  • helped create an infographic explaining the commercialisation of research;
  • compiled survey data;
  • wrote an article on her experience for the gemaker website.

Through it all, the student was a delight to take out.

She asked interesting and intelligent questions, and the enthusiasm she showed reminded us why we got into this business in the first place.

Yes, it can be challenging to design a program for a STEM work experience student.

Yes, it might be easier to point them at the lunchroom and the photocopier.

But if a small business like gemaker can do it, imagine the opportunities large, established companies and research organisations might be able to offer.

With a STEM work experience student, you win too

Taking on a work experience student can be exciting and have huge personal rewards for you too. A student can help you revitalise, recharge and remember what you love about your profession. It is inspiring to watch them be inspired.

Students can offer a different viewpoint, new ideas and a two-way learning opportunity that might surprise you. Why not ask a student how they think you could improve your social media presence?

Work experience is pivotal to the choices kids make in upper high school and beyond.

If we want to see more students in STEM, and believe passionately in the value of science and innovation, we have a social responsibility as a STEM organisation to provide genuine opportunities for students.

If we don’t make time for the next generation, we’re losing a massive opportunity to show what researchers can do.

Where to start

If you’re not sure how to go about inviting students into your workplace, here are three steps you can take this week:

  1. Tell staff that STEM work experience opportunities are available if they know students with a keen interest in science.
  2. See what STEM work experience programs are running at your own child’s school, and if you can contribute.
  3. Reach out to your local high school (start with the principal) to offer your services to the school.

You have the power within your hands to totally inspire a student or utterly turn them off.

At gemaker, we don’t have all the answers but we’re doing our bit.

And if each of us contributes, we can inspire the next generation and attract the brightest young minds to science and innovation.

– Natalie Chapman, gemaker

commercialisation

research and industry partnerships

What you can do for industry

My team and I have just run a two-day workshop at a Sydney-based university aimed at empowering academic researchers to engage professionally, effectively and sustainably with industry, and it was an eye-opening experience for us all.

As always happens when I teach, I learnt a lot, even though technology transfer is my expertise. I learnt more about what holds researchers back from beneficial partnerships with industry, and shared the joy of ‘A-ha!’ moments, when they realised what they could change or start doing, to seed the relationships they need.

From 1 January 2017, academic researchers will need those ‘A-ha!’ breakthroughs more than ever, as the Australian Government intends to introduce new research funding arrangements for universities that give equal emphasis to success in industry and other end-user engagement as it does to research quality.

After two days exploring industry imperatives and restrictions, and developing skills in market research and commercial communication, I interviewed the 16 participants, to determine any leaps in understanding they had made during the workshop. I found two major developments in their thinking:

1. Looking at the relationship with industry from the other side

‘I need to engage with the needs of the stakeholder,’ said one participant.

‘Go with open questions – don’t make it about you,’ said another.

To paraphrase JFK, academics should ask not what industry can do for them, but what they can do for industry. Only by identifying and understanding the needs of businesses (driven by the needs of customers), can academics think about how outcomes of their research – innovative ideas or new technologies – might solve some problems faced by industry. This is the first step in building a long-term, mutually beneficial relationship.

A particularly switched-on workshop participant realised the value of talking to industry before starting a new research project, then designing the project to deliver a real-world solution, identifying the ‘importance of prior planning – allowing time for the relationship to develop’. A-ha!

For many, the breakthrough came when they realised that this is not selling out – that commercialisation is not the dark side of research. Commercialisation is how researchers can turn their potentially life-saving or world-bettering discoveries into real products or services to make an actual difference in medicine, the environment, space, communications, data, energy, or wherever their passions lie. I have written more about this here.

2. Appreciating the importance and value of social media – especially LinkedIn – in finding industry contacts and maintaining industry partnerships.

‘I need to advertise myself better,’ was one participant’s succinct take-home.

Yes! Otherwise industry will struggle to find you, even if your R&D capabilities are a perfect fit for their needs. It came as a surprise to several academics that the kings and queens of commerce do not spend hours trawling ResearchGate, seeking potential partners, or in many cases even know of it. They hadn’t considered that ResearchGate is a closed door to non-researchers. In contrast, a targeted, professional and proactive presence on LinkedIn will rapidly get a researcher’s foot in the right industry door.

Other breakthroughs in learning about research and industry partnerships

One workshop participant found it enlightening to think about research outcomes ‘in measurable terms’.

Another experienced ‘surprising results from acting outside my comfort level’ when they were tasked with approaching and engage strangers in conversation.

Engaging with industry can be confronting for researchers, requiring investment of time and some additional knowledge and skills, as I know from personal experience, shared here. But what if you consider the potential comfort of ongoing funding from a productive industry partnership, plus the satisfaction of turning your research findings into measurable real-world benefits..?

A-ha!

– Natalie Chapman, Managing Director, gemaker

You might also enjoy this post on research and industry partnerships:

Engaging industry in research

technology transfer

Empowering knowledge transfer

To date TTPs have lacked clear and identifiable career paths.  While commercialising publicly funded research is relatively new, the drive from external stakeholders such as Government and business to “do better” has escalated the need to better define the practice, and outline what is required to effectively put research to use in both an ethical and competent manner.

Knowledge Commercialisation Australasia (KCA) commissioned the development of a world-first career Capability Framework that defines the skills, knowledge, behaviours and values required by a team taking research to market, and outline career paths for those working in the role at different levels. 

Entitled Knowledge Transfer in Australia: Is there a route to professionalism?,  the new Framework is the result of intensive research where 103 TTPs, 31 stakeholders and 64 Australasian organisations were interviewed and surveyed. It describes up to 200 desired capabilities for TTPs, divided into seven clusters and sixteen sub-clusters, and classified by development stages: early-career, mid-career and senior level. 

Infographic

technology transfer professionals
Click the image above to open KCA’s Technology Transfer Professionals infographic.

Results

Study participants perceived the skills of Australasian TTPs to be strong in the area of intellectual property advice and knowledge transfer, plus the qualifications and experience of those in the industry is well respected. The skills requiring the most development are in the areas of business acumen, communications and influence, legal compliance and advice, marketing and relationships, social media, and strategy and results.

KCA Chair and Director of Monash Innovation at Monash University, Dr Alastair Hick says that with increased demand and interest in improving the transfer of research to market, the KCA Framework comes at the right time. 

“To date there has been a lot of discussion about Australia’s record of translating research success into commercial uptake and jobs creation, with much of it focussing on the researcher,” says Hick.  

“However, technology transfer professionals play a vital role in commercialising research out of research organisations so ensuring they have the right skills and development are crucial to this commercial success. The framework is helping us to benchmark our performance and skills and see where KCA can provide additional training opportunities for our members.”

Applications

In March 2015, the Professional Standards Council awarded a $98,000 grant to KCA to develop the framework for the professional competency standards of the technology transfer sector.

“The Capability Framework we have developed provides benchmarks for technology transfer professionals (TTPs), against which the performance of individuals and teams can be measured,” says Hick.

“A digest of the Framework will be provided to KCA Members as a toolkit to improve recruitment practices, select targeted professional development, communicate their capabilities to stakeholders, and enable informed self-assessment and career planning.

“Researchers and industry stakeholders can also use the Framework to improve their understanding of the role of TTPs, thereby promoting more transparent, accountable and productive partnerships.”

Next steps for Technology Transfer Professionals

Recommendations for KCA and similar organisations include the development of a Code of Ethics for the TTP sector; focused education programs to address the identified skills gaps; secondment and mentoring programs involving Technology Transfer Offices and industry stakeholders and a formal processes for stakeholder feedback on the performance of TTPs.

“We are delighted to see this report, as it tackles the issue of advancing knowledge exchange and commercialisation by providing insights to build Australian industry,” says Dr Deen Sanders, Chief Executive Officer of the Professional Standards Council.

“It also shows that this sector is taking a serious and strategic approach to raising standards and becoming a profession,” says Sanders. 

Read the full report here.

This information was first shared by Knowledge Commercialisation Australasia and gemaker on 9 September 2016. Read the original article here.

unconscious bias

Bias, both conscious and unconscious

It’s hard to believe that, in 2016, there is still a chronic underrepresentation of women in science, technology, engineering and maths (STEM) at senior levels. It’s recognised that family constraints, perceived lack of promotion opportunities, lack of mentorship and culture play a huge part. But to what degree does bias – often unconscious bias – inhibit women’s progress in STEM?

Unconscious bias refers to a bias we’re unaware of, which happens automatically, and is triggered by our brain making quick assessments of people and situations. Unconscious bias is influenced by our own background, cultural environment and personal experiences.

Everyone has subconscious biases, including you. They are simply the brain’s way of coping with and categorising all the information we receive every day. Our tendency to discriminate against a group or type of person may not be intentional, but we can do something to change it.

Science suffers from a perception of masculinity

In STEM, there is often an association of science with maleness, and scientists with masculinity. A quick Google Images search for ‘scientist’ yields many more pictures of men in lab coats than women. We’ve all been to conferences with all-male panels, and entire sessions with only male speakers. These messages and experiences at the back of our brain influence our decisions, and we don’t even know it.

Studies have shown that male students are more likely than female students to underestimate the strengths of their female classmates, despite similar grades. This bias against women can follow individuals from the classroom to the workplace. In research meetings, it’s sometimes assumed women are there in an administrative capacity, rather than being highly skilled, PhD-qualified researchers. My own sister, who has a PhD in machine learning and statistics, is often asked by men at conferences, “How comfortable are you with mathematics?”

So how can we improve things? It’s heartening to hear that the Australian Research Council has announced in their new gender equality action plan, which involves appointing more women to the grant application review committee. They’re also considering measures to help panellists become more aware of unconscious bias. In the US, some universities run programs on unconscious bias as a professional development opportunity for graduate students.

Five ways to fight unconscious bias

If you’re reading this – male or female – you can help by taking the following steps:

  1. Be aware

Recognise that bias exists – we all have it!

  1. Learn more

Learn about your implicit bias by taking the implicit association test (IAT).

  1. Take steps to address biases

If you find you have biases (most people do), address them. Actively learning more about female scientists and engineers, and having positive images of women in science in your workplace, classroom or home can help to ‘reset’ your biases.

  1. Call it out

If you’re at a conference devoid of women as speakers or panel members, say something. Ask why there is so little female representation.

  1. Showcase talented female scientists

The idea that merit is compromised if gender is considered is still a huge barrier to progress. There are so many amazing female scientists out there – we just need to give them platforms to be heard.

Dr Julie Wheway

Manager, Strategic Engagement, gemaker

Read next: Head of the School of Computer Science at the University of Adelaide, Katrina Falkner, reveals why Australia is on the verge of change for women in technology.

People and careers: Meet women who’ve paved brilliant careers in STEM here, find further success stories here and explore your own career options at postgradfutures.com.

Spread the word: Help Australian women achieve successful careers in STEM! Share this piece on unconscious bias using the social media buttons below.

More Thought Leaders: Click here to go back to the Thought Leadership Series homepage, or start reading the Graduate Futures Thought Leadership Series here.

commercialisation

Is commercialisation the dark side?

As an avid Star Wars fan I’d like to explore the topic of research commercialisation using terms that a Jedi Knight would recognise.

The Federal Government is seeking a better return on its sizeable investment in research through:

  • better commercialisation of research
  • more engagement between researchers and industry, and
  • changing the requirements for funding for research institutions and the incentives for researchers.

To some, this push for a more commercial and applied approach to research is like the Emperor urging Luke Skywalker to embrace the dark side of the force.

Like a Jedi apprentice, I began my science degree because of my love of science and desire to make a difference. I was not interested in doing a business degree or any degree that would purely maximise my salary prospects.

I chose an honours project close to my heart, involving ‘cis-platinum’ chemotherapy for breast cancer, with which my aunt had been recently diagnosed. Unfortunately the project was given to a student who was less passionate about it, but had a higher grade point average than me.

I was forced to find an alternative project. Seeking something with a practical application, I changed universities and chose a project sponsored by a company seeking a solution to a problem. My honours thesis titled ‘The wettability of rough surfaces’ looked at why roughening a surface could make it more hydrophobic for practical applications in non-stick surfaces.

When I started work at ANSTO, in a role that was half research and half business development, I was tasked with creating a spin-off business involving one of the research instruments.

As I was introduced to other research staff, a term came up that I was familiar with, but not in a work context. Some researchers referred to me as having moved to the “dark side”.  This was said as a joke, but it stemmed from an underlying belief that anyone associated with commercialisation, or engaging with industry regularly, was doing something wrong.

The implication was that there was something suspect about me for being involved in this type of activity, ‘tainted’ by commerce.

Being older and – I’d like to think – somewhat wiser, I now reflect that, had I continued along the pathway of medical research into breast cancer, perhaps I would have made an amazing discovery that could have saved many lives. But for my research to result in a cure would require the involvement of commercialisation experts – the kind of person I have become.

Between a cancer research discovery and a cured patient lies the long and arduous process of commercialisation which requires a team-based approach, where research and commercial staff work collaboratively.

I know now that being responsible for industry engagement, or commercialisation of a project rather than the research, does not mean my work is any less important, pure or noble. I’m using my strongest skills in the best way to have a positive impact for humanity, in my own way.

Commercialisation experts are not the Sith, we bring balance to the force by forging new Australian industries and actively training young researchers in the ways of industry, for research alone cannot achieve a better future.

I believe commercialisation is not the Dark Side, it is A New Hope.

– Natalie Chapman, Managing Director, gemaker

commercialisation

Natalie Chapman is a commercialisation and marketing expert with more than 15 years of experience turning innovative ideas and technologies into thriving businesses.

She co-founded her company gemaker in 2011 after almost a decade leading business development and marketing projects at ANSTO and, in 2013, won a Stevie Award for Female Entrepreneur of the Year in Asia, Australia and New Zealand.

Natalie specialises in mining, new materials, environmental and ICT technologies. She takes technologies from research through to start-up, assisting her clients with commercialisation strategy, building licensing revenue, securing funding grants, tenders and engaging with industry.

Natalie also heads corporate communications at ASX-listed mining and exploration company Alkane Resources and is responsible for attracting investment, government relations and marketing communications.

Natalie has a Bachelor of Science with honours (Chemistry) from the University of New South Wales and a Master of Business Administration (Marketing) from the University of Wollongong.