Tag Archives: evolution

top stories

Top stories of the year

Featured image above: AI progress makes history – #2 of the top stories in STEM from 2016.

1. New way to cut up DNA

On October 28, a team of Chinese scientists made history when they injected the first adult human with cells genetically modified via CRISPR, a low-cost DNA editing mechanism.

Part of a clinical trial to treat lung cancer, this application of CRISPR is expected to be the first of many in the global fight against poor health and disease. 

2. AI reads scientific papers, distils findings, plays Go

Artificially intelligent systems soared to new heights in 2016, taking it to number 2 on our list of top stories. A company called Iris created a new AI system able to read scientific papers, understand their core concepts and find other papers offering relevant information.

In the gaming arena, Google’s DeepMind AlphaGo program became the first AI system to beat world champion, Lee Se-dol, at the boardgame Go. Invented in China, Go is thought to be at least 2,500 years old. It offers so many potential moves that until this year, human intuition was able to prevail over the computing power of technology in calculating winning strategies. 

3. Scientists find the missing link in evolution

For a long time, the mechanism by which organisms evolved from single cells to multicellular entities remained a mystery. This year, researches pinpointed a molecule called GK-PID, which underwent a critical mutation some 800 million years ago.

With this single mutation, GK-PID gained the ability to string chromosomes together in a way that allowed cells to divide without becoming cancerous – a fundamental enabler for the evolution of all modern life. GK-PID remains vital to successful tissue growth in animals today. 

4. Data can be stored for 13.8 billion years

All technology is subject to degradation from environmental influences, including heat. This means that until recently, humans have been without any form of truly long-term data storage.  

Scientists from the University of Southampton made the top stories of 2016 when they developed a disc that can theoretically survive for longer than the universe has been in existence. Made of nano-structured glass, with the capacity to hold 360TB of data, and stable up to 1,000°C, the disc could survive for over 13.8 billion years. 

5. Mass coral bleaching of the Great Barrier Reef

The most severe bleaching ever recorded on the Great Barrier Reef occurred this year. Heavy loss of coral occurred across a 700km stretch of the northern reef, which had previously been the most pristine area of the 2300km world heritage site.

North of Port Douglas, an average of 67% of shallow-water corals became bleached in 2016. Scientists blame sea temperature rise, which was sharpest in the early months of the year, and which resulted in a devastating loss of algae that corals rely on for food. 

6. Climate protocol ratified – but Stephen hawking warns it may be too late

On the 4 November 2016, the Paris Agreement became effective. An international initiative to reduce greenhouse gas emissions and control climate change, the Paris Agreement required ratification by at least 55 countries representing 55% of global emissions in order to become operational.

So far 117 countries have joined the cause, with Australia among them. But some of the world’s greatest minds, including Stephen Hawking, believe time is running out if the human race is to preserve its planet. 

7. Young people kick some serious science goals

A group of high schoolers from Sydney Grammar succeeded in recreating a vital drug used to treat deadly parasites, for a fraction of the market price.

The drug, known as Daraprim, has been available for 63 years and is used in the treatment of malaria and HIV. There was public outcry in September when Turing Pharmaceuticals raised the price of the drug from US$13.50 to US$750. 

In collaboration with the University of Sydney and the Open Source Malaria Consortium, a year 11 class at Sydney Grammar created the drug at a cost of only $2 per dose, and made their work freely available online.

8. Gravitational waves detected

Albert Einstein’s general theory of relativity was confirmed in February, when scientists observed gravitational waves making ripples in space and time. 

Gravitational waves are thought to occur when two black holes merge into a single, much larger, black hole. They carry important information about their origins, and about gravity, that helps physicists better understand the universe. 

The gravitational waves were observed by twin Laser Interferometer Gravitational-wave Observatory detectors in Louisiana and Washington. Australian scientists helped to build some of the instruments used in their detection.

9. Moving away from chemotherapy

Researchers at the University College London made a leap forward in cancer treatment when they found a way to identify cancer markers present across all cells that have grown and mutated from a primary tumour. They also succeeded in identifying immune cells able to recognise these markers and destroy the cancerous cells. 

This breakthrough opens the door not only for better immuno-oncology treatments to replace the toxic drugs involved in chemotherapy, but also for the development of personalised treatments that are more effective for each individual.

10. New prime number discovered

The seventh largest prime number ever found was discovered in November. Over 9.3 million digits long, the number 10223*231172165+1 was identified by researchers who borrowed the computer power of thousands of collaborators around the world to search through possibilities, via a platform called PrimeGrid. 

This discovery also takes mathematicians one step closer to solving the Sierpinski problem, which asks for the smallest, positive, odd number ‘k’ in the formula k x 2n + 1, where all components of the formula are non-prime numbers. After the discovery of the newest prime number, only five possibilities for the Sierpinski number remain.

– Heather Catchpole & Elise Roberts

If you enjoyed this article on the top stories of the year, you might also enjoy:

Gravity waves hello

Have a story we missed? Contact us to let us know your picks of the top stories in STEM in 2016.

directed evolution

First woman wins Millenium Technology Prize

Featured image above: Frances Arnold. Credit: Caltech

Frances Arnold, the Dick and Barbara Dickinson Professor of Chemical Engineering, Bioengineering and Biochemistry at the California Institute of Technology (Caltech), has been awarded the Millennium Technology Prize for her “directed evolution” method, which creates new and better proteins in the laboratory using principles of evolution. The Millennium Technology Prize, worth one million euros (approximately A$1.5 million), is the world’s most prominent award for technological innovations that enhance the quality of people’s lives.

Directed evolution, first pioneered in the early 1990s, is a key factor in green technologies for a wide range of products, from biofuels to pharmaceuticals, agricultural chemicals, paper products, and more.

The technique enlists the help of nature’s design process — evolution — to come up with better enzymes, which are molecules that catalyse, or facilitate, chemical reactions. In the same way that breeders mate cats or dogs to bring out desired traits, scientists use directed evolution to create desired enzymes.

“We can do what nature takes millions of years to do in a matter of weeks,” says Arnold, who is also director of the Donna and Benjamin M. Rosen Bioengineering Centre at Caltech. “The most beautiful, complex, and functional objects on the planet have been made by evolution. We can now use evolution to make things that no human knows how to design. Evolution is the most powerful engineering method in the world, and we should make use of it to find new biological solutions to problems.”

Directed evolution works by inducing mutations to the DNA, or gene, that encodes a particular enzyme. An array of thousands of mutated enzymes is produced, and then tested for a desired trait. The top-performing enzymes are selected and the process is repeated to further enhance the enzyme’s performance. For instance, in 2009, Arnold and her team engineered enzymes that break down cellulose, the main component of plant-cell walls, creating better catalysts for turning agricultural wastes into fuels and chemicals.

“It’s redesign by evolution,” says Arnold. “This method can be used to improve any enzyme, and make it do something new it doesn’t do in nature.”

Today, directed evolution is at work in hundreds of laboratories and companies that make everything from laundry detergent to medicines, including a drug for treating type 2 diabetes. Enzymes created using the technique have replaced toxic chemicals in many industrial processes.

“My entire career I have been concerned about the damage we are doing to the planet and each other,” says Arnold. “Science and technology can play a major role in mitigating our negative influences on the environment. Changing behavior is even more important. However, I feel that change is easier when there are good, economically viable alternatives to harmful habits.”

“Frances is a distinguished engineer, a pioneering researcher, a great role model for young men and women, and a successful entrepreneur who has had a profound impact on the way we think about protein engineering and the biotechnology industry,” says David Tirrell, the Ross McCollum-William H. Corcoran Professor of Chemistry and Chemical Engineering at Caltech. “The Millenium Technology Prize provides wonderful recognition of her extraordinary contributions to science, technology, and society.”

Arnold received her undergraduate degree in mechanical and aerospace engineering at Princeton University in 1979. She earned her graduate degree in chemical engineering from UC Berkeley in 1985. She arrived at Caltech as a visiting associate in 1986 and became an assistant professor in 1987, associate professor in 1992, professor in 1996, and Dickinson Professor in 2000.

She is the recipient of numerous awards, including in 2011 both the Charles Stark Draper Prize, the engineering profession’s highest honor, and the National Medal of Technology and Innovation. Arnold is one of a very small number of individuals to be elected to all three branches of the National Academies—the National Academy of Engineering (2000), the Institute of Medicine (2004), and the National Academy of Sciences (2008)—and the first woman elected to all three branches.

“I certainly hope that young women can see themselves in my position someday. I hope that my getting this prize will highlight the fact that yes, women can do this, they can do it well, and that they can make a contribution to the world and be recognised for it,” says Arnold.

The Millennium Technology Prize is awarded every two years by Technology Academy Finland (TAF) to “groundbreaking technological innovations that enhance the quality of people’s lives in a sustainable manner,” according to the prize website. The prize was first awarded in 2004. Past recipients include Sir Tim Berners-Lee, creator of the World Wide Web; Shuji Nakamura, the inventor of bright blue and white LEDs; and ethical stem cell pioneer Shinya Yamanaka. Arnold is the first woman to win the prize.

– Whitney Clavin

This article was first published by Caltech on 24 May 2016. Read the original article here.