From cell to accessible therapy: the future of regenerative medicine

May 10, 2018

Regenerative medicine is on the rise but time and money is a limiting factor.

gene therapy

The cell and gene therapy industry is the fastest growing sector of regenerative medicine. Commercial cell therapies are being developed to treat several major diseases, including cardiovascular disease, cancer and autoimmune conditions. However, developing and manufacturing cell therapies is lengthy, labour intensive and expensive.

The CRC for Cell Therapy Manufacturing (CTM CRC) began in 2013, operating at the interface of cell biology and materials science. The CRC aims to help the cost-effective manufacture of cell therapies and assist their rapid translation into clinical practice.

CTM CRC’s research programs are driven by commercial imperatives and initially brought together 15 participant organisations across four states, including two international companies. That approach has led to the development of new immunotherapies and novel materials and surfaces to optimise cell and gene therapy manufacture.

From the outset, CTM CRC has focused on developing strategies to ensure its work continues beyond the funding period. “With two CTM CRC legacy vehicles to continue the excellent work carried out to date, the strategy to transition towards self-sufficiency has paid off,” says CTM CRC CEO

Dr Sherry Kothari. The CRC has incorporated its first spin-out company, Carina Biotech, and a second company, TekCyte, will also soon be incorporated. Both Carina and TekCyte will further develop and commercialise CTM CRC technologies, and are poised to continue the CRC’s work of making cell therapies more affordable and accessible.

Carina Biotech — A promising future for cancer treatment

In the last five years, researchers have achieved promising results in clinical trials of a revolutionary new treatment for blood cancers called Chimeric Antigen Receptor (CAR)-T cell therapy. CAR-T cell therapy is an immunotherapy that harnesses the patient’s own immune system to fight their cancer.

Since 2012, CAR-T cell therapy trials in adult and paediatric patients have recorded complete remission rates of up to 93%, offering huge potential for leukaemia and lymphoma treatment. The replication of this success in the treatment of solid cancers is a new focus of this approach, and it’s also the basis on which the CRC for Cell Therapy Manufacturing (CTM CRC) company, Carina Biotech, was founded.

“To effectively translate the unprecedented cancer-killing activity of CAR-T cells in blood cancers into solid cancers would represent the Holy Grail in the cellular immunotherapy industry,” says Dr Justin Coombs, CEO of Carina Biotech.

T-cells, the backbone of CAR-T cell therapy, are the ‘warriors’ of the immune system and they attack undesirable cells in the body. CAR-T cell therapy involves isolating a patient’s T-cells from a sample of blood and engineering them so they recognise and attack specific markers on cancer cells. These new CAR-T cells are then infused back into the patient to seek and destroy the cancer.

Carina Biotech’s first lead technology in cell and gene therapy research is a CAR-T cell that attacks a cancer-specific marker on solid cancers, but not on healthy cells. Early data indicates these CAR-T cells can kill a diverse range of solid cancer cells in vitro, including breast, ovarian and brain cancers and melanoma. Pending positive results from in vitro pre-clinical studies, slated to begin in 2018, the first-in-human clinical trials could follow within two years.

It is clear there is great potential for CAR-T cell therapy to play a leading role in the race to cure cancer, but as Dr Coombs cautions, “Solid cancers are shaped by evolution to defend themselves from attack. Carina is aiming to develop weapons for immune cells to destroy all solid cancers.”

TekCyte — Moving rapidly from lab to commercial scale

TekCyte, the translational facility of CTM CRC, was set up to respond to manufacturing challenges in the evolving cell and gene therapy industry. TekCyte’s focus is to translate technologies from the lab to pilot scale.

“Pilot-scale manufacturing is where many technologies stall because they cannot be replicated in commercial settings,” says Dr Tony Simula, who leads TekCyte with Dr Andrew Milligan. “There are unique challenges in scaling up processes involving living cells and TekCyte addresses these as an important step towards commercial manufacture of cell therapy products.”

TekCyte is currently validating two CTM CRC technologies for the commercial market: the delivery of stem cells for the treatment of chronic wounds, and an antithrombotic coating for vascular stents to reduce thrombosis and restenosis. With positive preclinical data to date, it is imperative that TekCyte is able to consistently produce both products in large volumes, as well as meeting stringent regulatory requirements and demonstrating reliable performance. TekCyte’s infrastructure and expertise enables it to fulfil this critical translational role so it can bridge the gap between the laboratory and commercial development.

“TekCyte is unique because it combines materials surface and cell biology expertise, with the know-how and infrastructure required to manufacture at pilot scale,” says Dr Milligan.

“This capability has given TekCyte a competitive advantage and enables it to expand its offering to include product development for companies.”

TekCyte aims to establish itself as an important player in the global supply chain for the regenerative medicine industry. It is evolving into a world-class translational facility, able to develop and supply specialised coatings and processes for cell and gene therapy manufacture and other biomedical applications.


Related stories

Leave a Reply

Your email address will not be published. Required fields are marked *