The sunshine factory

August 24, 2017

Led by the legendary Martin Green, UNSW’s photovoltaic researchers have toppled world records in solar cell design again and again. But they ain’t done yet.

photovoltaic research

Featured image above: World record holder Xiaojing Hao with CZTS thin-film cells atop the Tyree Energy Technologies Building at UNSW’s Kensington campus.

Xiaojing Hao couldn’t sleep. Two weeks earlier, the UNSW engineer had sent a thin black tile, barely the size of a fingernail, to the US for testing, and she was waiting anxiously for the results. Her PhD students were equally on edge.

It was midnight when Hao checked her email one more time. It was official: her team had broken a solar cell world efficiency record. “I was full of joy at the achievement,” Hao recalls. “I shared the good news with my team immediately – we made it!”

Hao’s thin black tile had become the newest champion in the solar cell race: one of seven world records UNSW photovoltaics researchers broke in 2016. Efficiency records are not just notches in the scientists’ belts. The more sunlight solar cells can convert, the less manufacturing, transport, installation and wiring is needed to deliver each watt – moving solar energy closer and closer to knocking coal off its perch as the cheapest form of energy.

UNSW photovoltaics researchers, led by Martin Green – often dubbed the ‘father of photovoltaics’  – have held world records for efficiencies in solar cells in 30 of the past 33 years. And with its strong track record in research commercialisation, UNSW’s prototype technology is setting the trends for the commercial solar market.

Meanwhile, their focus is on developing the next generation of solar cells – pushing forward to a zero-emission future. 

Martin Green and Wei Zhang measure the adhesion between metal contacts and solar cells.

Making a commercially viable product

Hao moved to Sydney in 2004 from China, where the solar industry is booming. A materials engineer by training, Hao was intrigued by the frontline photovoltaic research on thin-film solar cells at UNSW.

These cells have benefits over the more traditional silicon cells. The manufacturing process doesn’t require high temperature steps. They can also be much thinner than bulky wafer silicon, and so could engender new solar applications: imagine solar-powered electric cars,  building-integrated solar cells or photovoltaic glazing on windows.

So far, the thin-film uptake in the markets has been sluggish: commercial thin-film cells make up only around 8% of the solar market. The problem is that the commercial products available, cadmium telluride and copper indium gallium selenide (CIGS), are made of toxic or rare materials: cadmium is highly toxic and tellurium is about as abundant as gold.

So Hao decided to go back a step. “We’re trying to make the whole world ‘green’, right?” she says. “So, we should choose materials that are non-toxic and cheap, and that would ensure their deployment in the future – without constraint on raw materials.”

Finding a material worth investigating

Her quest for a greener world began in 2011, after she returned from maternity leave. Hao and her PhD supervisor, Martin Green, knew what they were looking for: a mix of elements that would absorb and conduct energy from sunlight, and are commonly found in nature.

“We worked our way through the periodic table for materials that met those criteria – CZTS was the one that popped out at you as worthy of investigation,” Green explains.

In 2012 CZTS – copper, zinc, tin and sulphide – was recorded for the first time in the solar cell efficiency tables, an internationally curated list of solar cell performance. Inclusion in the tables means a new cell has been independently tested for efficiency by a recognised test centre, and indicates the new cell has features that will be interesting for the photovoltaic community.

Hao began making her own version of the CZTS cell, looking for defects, ironing out the kinks and pushing efficiencies, bit by bit.

At the basic level, all solar cells absorb photons from sunlight and funnel them into an electric current. Hao discovered that tiny holes in her CZTS cells, formed as the components were baked during production, acted like a roadblock for that charge. By adding a microscopic grid layer through the cells, her team stopped these holes from forming, and raised their efficiency to 7.6% in a 1cm2 cell.

That was Hao’s first world record. By changing the buffer that helps the CZTS cell collect charge, the team could further tweak the current flow and voltage output. This buffer netted Hao another world record in September 2016 – a 9.5% efficiency for a 0.24cm2 cell, beating a 9.1% record previously held by Toyota.

“We’re completely leading CZTS solar cell technology at the moment,” Hao says with a smile.

The energy output of Xiaojing Hao’s CZTS cells are tested.

According to Hao, these records have already sparked interest from Chinese, US partners China Guodian Corp – one of the five largest power producers in China – and Baosteel, the giant state-owned iron and steel company based in Shanghai.

Hao is also in talks with thin-film manufacturers MiaSolé of the US, Sweden’s  Midsummer and Solar Frontier in Japan. The companies are commercial producers of CIGS cells and their production lines use similar methods; Hao says they could easily adapt them
for CZTS production.

Hao believes efficiencies of above 15% will start moving CZTS to the commercial market. She is already well on her way, aiming to bring her CZTS cells to 13% efficiency by 2018.

Taking on the solar cell market

After four decades in photovoltaics research at UNSW, Martin Green has a healthy scepticism when it comes to marrying new breakthrough technologies with commercial markets. “The solar industry is just so huge that you need enormous resources to introduce a new product to the market – and there’s a huge risk associated with that,” he says.

With a firm grip on 90% of the commercial solar cell market, “the situation with silicon is a bit like that of the internal combustion engine,” Green explains. “That engine is not the best fossil fuel engine, but the huge industry supporting it means it has been very difficult to displace.”

But CZTS does not need to compete with silicon – the two can complement each other. Silicon absorbs red light better than blue, while CZTS absorbs blue wavelengths better. A CZTS layer on top of a silicon cell can catch the wavelengths silicon does not use efficiently. Green says the big silicon manufacturers could trial the new CZTS technology by selling these ‘stacked cells’ as a premium product line.

“Companies that are well established would be interested in exploring that space – it just seems like a natural evolutionary path for photovoltaic technology,” he says.

Collaborating with the competition

Just a few labs down the corridor of the Tyree Energy Technologies Building at UNSW’s Kensington campus, Anita Ho-Baillie is working with Green to put another ‘stackable’ thin-film solar cell through its paces.

In 2009, a material called perovskite arrived on the thin-film solar cell stage with an efficiency of 3.8%. Perovskites have since shot up in efficiency ratings faster than any other solar cell technology.

After Ho-Baillie’s team found a new way to apply perovskite to a surface in an even layer, their solar cells broke three more world records in 2016. Her next step is to make perovskites more durable to match the current lifetime of silicon solar cells – an essential prerequisite for large-scale commercial deployment.

Anita Ho-Baillie with her record-setting perovskite cells.

As the leader of the perovskites project in UNSW-based Australian Centre for Advanced Photovoltaics (ACAP), Ho-Baillie stands at the nexus of Australia’s greatest cluster of scientists pushing thin-film technologies forward. 

This alliance consists of six research organisations around Australia: the national research agency, CSIRO; Melbourne’s Monash University and the University of Melbourne; the University of Queensland in Brisbane; the Australian National University in Canberra; and UNSW in Sydney.

ACAP director Martin Green says, “We’ve been able to draw on the expertise of all these groups and come at problems from different angles, so it’s really put us in a good spot internationally”.

Ho-Baillie admits balancing collaboration with competition is tricky in a field where everyone is trying to claim the top spot. “It’s hard, but we find working together really helps,” she says. 

Much like CZTS and other thin films, perovskite cells are flexible, making them a perfect candidate for energy-harvesting glazes on building materials, cars or windows. But Ho-Baillie has even greater ambitions: with their low weight-to-power ratio, perovskites would be perfect for supplying precious energy to spacecraft, where every kilo counts. 

“Perovskites came from nowhere,” she says. “Now I think they will lead us to something that we never even thought would work.”

Improving the cost of solar energy by 150 fold

Thin films are making their mark, but Green is also working to squeeze more energy from sunlight using silicon, smashing two more world records in 2016. Using specialised mirrors and prisms, Mark Keevers from Green’s team pushed silicon cells to collect concentrated sunlight with 40.6% efficiency, and unconcentrated sunlight at 34.5%.

Mark Keevers made silicon cells more efficient using specialised mirrors and prisms.

Although these prototypes are perfect for soaking up photons on solar tower ‘concentrators’ with heavy-duty efficiency, their manufacturing costs are too high to make them viable in the consumer market.

But on the rooftop, silicon is still king. And it’s thanks to plunging costs made possible by a UNSW-led boom in silicon solar cell production in China, which now provides more than half the world’s solar cells.

In 1995, Green and his long-term collaborator Stuart Wenham – along with (then) PhD student Shi Zhengrong – started solar cell company Pacific Solar in Australia.

Solar pioneers Martin Green and Stuart Wenham

After six years racking up a wealth of management and manufacturing know-how, Zhengrong returned to his native China and founded the silicon solar manufacturing company Suntech Power in 2001, using technology developed at UNSW to dramatically reduce costs.

By 2005, Zhengrong became the world’s first ‘solar billionaire’, and a wave of Chinese companies hit the market, following Suntech’s recipe. The global solar industry was growing at an average 41% year-on-year. And within a decade, China’s market share of the global photovoltaic industry had grown from near zero to over 55%. Suntech itself delivered more than 13 million solar panels to 80 countries.

Where photovoltaic solar cells used to deliver one watt for US$76.67 in 1977,  that’s down to just US49¢ today. That’s a 150-fold improvement in the 40 years Green has been in the field.

“Shi was the right person at the right place and the right time to move in both Chinese and Western cultures,” Green says.

“It’s interesting to ponder what would have happened if UNSW hadn’t kick-started the Chinese industry.”

Breaking through the next barrier of photovoltaic research

With plunging module prices, rising efficiencies and more durable cells, why is the world still relying on coal for the lion’s share of its electricity needs? 

Perhaps it’s not the solar technology that we’re waiting for. A fundamental challenge remains: how to store the energy we can now capture from sunlight for later use.

“I think photovoltaics has already reached the tipping point – the efficiency and cost is already able to compete with fossil fuels,” says Wenham. “I think the next breakthrough needs to be in energy storage, to bring down that cost enough to make photovoltaics usable everywhere at any time.”

This doesn’t mean UNSW photovoltaics scientists are calling it a day. Instead, they continue to push silicon to its limits, while new technologies, such as Hao’s record-breaking CZTS tile, are racing to catch up to silicon’s powerhouse.

“Solar technology will continue to be higher-efficiency, lower-cost – and will keep getting better,” says Wenham. “The more we develop photovoltaic technology, the easier the transition will become.”

“We’ve reached a new era where coal is no longer the cheapest way of making electricity – it’s solar,” says Green. “And the exciting thing about that is – I regard solar as still in a very primitive stage of development, so there is plenty more cost reduction to come.”

– Viviane Richter

Photography: Quentin Jones

For more stories at the forefront of engineering research, check out Ingenuity magazine.

Recommended for you: The Quantum Gamble

Related stories

Leave a Reply

Your email address will not be published. Required fields are marked *