Tag Archives: University of Western Australia

peanut

Peanut genome key to non-allergenic products

Featured image above: The peanut (Arachis hypogaea L.) is an important global food source and a staple crop grown in more than 100 countries, with approximately 42 million tonnes produced every year. Credit: ICRISAT

In a world first, under the leadership of University of Western Australia Winthrop Professor Rajeev Varshney, a global team sequenced and identified 50,324 genes in an ancestor of the cultivated peanut, Arachis duranensis.

They decoded the peanut DNA to gain an insight into the legume’s evolution and identify opportunities for using its genetic variability.

Importantly, the researchers have isolated 21 allergen genes, that, when altered, may be able to prevent an allergic response in humans.

The last decade has seen an alarming rise in peanut allergies with almost three in every 100 Australian children suffering, and only 20 per cent growing out of the allergy.

The allergic reaction of peanuts is caused by specific proteins in its seeds, according to Varshney who is also the Research Program Director at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“These 21 characterised genes will be useful in breeding to select the superior varieties in the laboratory such as ones that are non-allergenic,” Varshney says.

They also identified additional genes that would help increase crop productivity and improve peanut nutritional value by altering oil biosynthesis and protein content.

Peanuts or groundnuts (Arachis hypogaea L.) are an important global food source and are a staple crop grown in more than 100 countries, with approximately 42 million tonnes produced every year.

Originating in South America, humans have cultivated peanuts for more than 7,600 years.

With a very high seed oil content of 45–56 per cent, peanut oil contains nearly half of the 13 essential vitamins and 35 per cent of the essential minerals.

Peanuts are also associated with several human health benefits, and have been found to improve cardiovascular health, reduce the risk of certain cancers, and control blood sugar levels.

“This genome sequence has helped to identify genes related to resistance to different diseases, tolerance to abiotic stresses and yield-related traits,” Varshney says.

“By using this ’molecular breeding’ approach, we can also accelerate the breeding process, and generate superior varieties in 3–5 years compared to traditional breeding that takes 6–10 years.”

Varshney says genomics-assisted breeding is a non-GMO or ‘non-transgenic’ approach.

“This is basically a simple breeding process that uses the molecular markers/genes to select the lines in the breeding, and farmers have been growing such varieties for many crops all around the world,” Varshney says.

– Teresa Belcher

This article was first published by Science Network Western Australia  on 25 August 2016. Read the original article here.

plant researcher

Plant researcher wins Scientist of the Year

Featured image above: 2016 WA Scientist of the Year, plant researcher Professor Kingsley Dixon (centre), with Premier Colin Barnett (right) and WA Chief Scientist, Professor Peter Klinken (left). Credit: Office of Science/The Scene Team 

Professor Kingsley Dixon has been the Curtin University Professor at Kings Park and Botanic Garden since 2015, but his career in plant research stretches back decades.

He was the Director of Science at Kings Park for 32 years, leading its research efforts and building a team of more than 50 scientists and research students.

With his trademark approach of turning ‘science into practice’ he discovered that bushfire smoke triggers the germination of plants in Australia, as well as other parts of the world.

He later led an 11-year research project with the University of Western Australia and Murdoch University colleagues that isolated the secret ingredient that triggered the germination.

“This discovery has led to new horticultural products, and the improved restoration and conservation of many rare and threatened Australian plants that are unable to be conserved or propagated by other means,” the Premier and Science Minister Colin Barnett says.

In accepting the award, Dixon paid tribute to his colleagues over the years.

“The incredible verve and enthusiasm of all the young people who came through the Kings Park labs over the years just inspired me in the belief that WA is a great place, it’s the greatest place on earth to do the sort of science that we do,” he says.

Scores of WA’s top scientists and researchers attended the awards ceremony at the Kieran McNamara Conservation Science Centre in Kensington.

The late Professor Ian Ritchie AO was inducted into the WA Science Hall of Fame for his lifelong dedication to science.

Professor Ritchie was instrumental in setting up ChemCentre, as well as establishing the AJ Parker Cooperative Research Centre for Hydrometallurgy (extracting metals from their ores).

Other award winners

Woodside Early Career Scientist of the Year

Dr Scott Draper, a renewable energy engineer investigating wave and tidal energy, based at the School of Civil, Environmental and Mining Engineering (CEME) at UWA.

ExxonMobil Student Scientist of the Year

Christopher Brennan-Jones, a PhD candidate at UWA’s Ear Sciences Centre who led an international consortium assessing the reliability of automated hearing tests.

Chevron Science Engagement Initiative of the Year

Curtin University’s Fireballs in the Sky project, a citizen science initiative which uses digital cameras in the outback to track the fireballs created by meteorites to better understand the solar system.

You’ll find more details on the finalists in each of the four categories here.

– Tony Malkovic 

This article was first published by Science Network Western Australia on 19 August 2016. Read the original article here.

engineering music video

Engineering music video inspires girls

Featured video above: NERVO’s engineering music video aims to get girls switched onto careers in engineering. 

Eight top universities – led by the University of New South Wales – have launched a song and music video by Australia’s twin-sister DJ duo NERVO to highlight engineering as an attractive career for young women.

NERVO, made up of 29-year-old singer-songwriters and sound engineers Miriam Nervo and Olivia Nervo, launched the video clip for People Grinnin’ worldwide on Friday 15 July.

In the futuristic video clip, a group of female engineers create android versions of NERVO in a high-tech lab, using glass touchscreens and a range of other technologies that rely on engineering, highlighting how it is embedded in every facet of modern life.

The song and video clip are part of Made By Me, a national collaboration between UNSW, the University of Wollongong, the University of Western Australia, the University of Queensland, Monash University, the University of Melbourne, the Australian National University and the University of Adelaide together with Engineers Australia, which launched on the same day across the country.

It aims to challenge stereotypes and shows how engineering is relevant to many aspects of our lives, in an effort to to change the way young people, particularly girls, see engineering. Although a rewarding and varied discipline, it has for decades suffered gender disparity and chronic skills shortage.

NERVO, the Melbourne-born electronic dance music duo, pack dancefloors from Ibiza to India and, according to Forbes,  are one of the world’s highest-earning acts in the male-dominated genre. They said the Made by Me project immediately appealed to them.

“When we did engineering, we were the only girls in the class. So when we were approached to get behind this project it just made sense,” they said.

“We loved the chance to show the world that there is engineering in every aspect of our lives,” they said. “We’re sound engineers, but our whole show is only made possible through expert engineering:  the makeup we wear, the lights and the stage we perform on.”

“Engineering makes it all possible, including the music that we make.”

Alexandra Bannigan, UNSW Women in Engineering Manager and Made By Me spokesperson, said the project highlights the varied careers of engineers, and the ways in which engineers can make a real difference in the world. 

“When people think engineering, they often picture construction sites and hard hats, and that perception puts a lot of people off,” she said. “Engineering is more than  that, and this campaign shows how engineering is actually a really diverse and creative career option that offers strong employment prospects in an otherwise tough job market.”

She noted that the partner universities, which often compete for the best students, see the issue as important enough to work together.

“We normally compete for students with rival universities, but this is such an important issue that we’re working together to break down those perceptions,” she said.

Made By Me includes online advertising across desktop and mobiles, a strong social media push, a website telling engineering stories behind the video, links to career sites, as well as the song and video, to be released by Sony globally on the same day. Developed by advertising agency Whybin/TBWA, the campaign endeavours to change the way young people, particularly girls, see engineering.

“We needed to find a way to meet teenagers on home turf and surprise them with an insight into engineering that would open their minds to its possibilities,” said Mark Hoffman, UNSW’s Dean of Engineering. “This is what led to the idea of producing an interactive music video, sprinkled with gems of information to pique the audience’s interest in engineering.”

UNSW has recently accelerated efforts to attract more women into engineering, more than tripling attendance at its annual Women in Engineering Camp, in which 90 bright young women in Years 11 and 12 came to UNSW from around Australia for a week this year to explore engineering as a career and visiting major companies like Google, Resmed and Sydney Water. It has also tripled the number of Women in Engineering scholarships to 15, valued at more than $150,000 annually.

Hoffman, who became Dean of Engineering in 2015, has set a goal to raise female representation among students, staff and researchers to 30% by 2020. Currently, 23% of UNSW engineering students are female (versus the Australian average of 17%), which is up from 21% in 2015. In industry, only about 13% of engineers are female, a ratio that has been growing slowly for decades.

“Engineering has one of the highest starting salaries, and the average starting salary for engineering graduates has been actually higher for women than for men,” said Hoffman. “Name another profession where that’s happening.”

Australia is frantically short of engineers: for more than a decade, the country has annually imported more than double the number who graduate from Australian universities.

Some 18,000 engineering positions need to be filled annually, and almost 6,000 come from engineering students who graduate from universities in Australia, of whom the largest proportion come from UNSW in Sydney, which has by far the country’s biggest engineering faculty. The other 12,000 engineers arrive in Australia to take up jobs – 25% on temporary work visas to alleviate chronic job shortages.

“Demand from industry has completely outstripped supply, and that demand doubled in the past decade,” said Hoffman. “In a knowledge driven economy, the best innovation comes from diverse teams who bring together different perspectives. This isn’t just about plugging the chronic skills gap – it’s also a social good to bring diversity to our technical workforce, which will help stimulate more innovation. We can’t win at the innovation game if half of our potential engineers are not taking part in the race.”

UNSW has also created a new national award, the Ada Lovelace Medal for an Outstanding Woman Engineer, to highlight the significant contributions to Australia made by female engineers.

This information was first shared by the University of New South Wales on 14 July 2016. Read the original article here.

whiteflies

Fighting poverty and championing equality

Featured image above: Laura Boykin (centre) and her colleagues.

The University of Western Australia‘s biologist Dr Laura Boykin has long been fascinated by science. But it wasn’t until she started working in East Africa to help farmers that she truly realised its power to make a difference.

Once she did that, she was hooked.

It’s this feeling of making a difference that lures her to some of the poorest regions on earth to understand and control whiteflies (Aleyrodidae), and their menace on the cassava crop that feeds some 800 million people in the developing world.

Understanding whitefly and its impact on cassava not only increases yields but also tackles poverty. Aiding the crop’s growth is quite literally saving lives.

“Cassava is dying at an alarming rate and a lot of people are worried that if this plant is not on farms there’s going to be a large portion of people without enough to eat,” Boykin says.

So now does she help? Whiteflies kill cassava by transmitting viruses to the plant when they feed on it.

The native whiteflies are increasingly turning to cassava as a food source as temperatures warm and other food sources disappear.

Boykin and her colleagues from East Africa have come to realise there are many different sorts of whitefly, with varying degrees of impact.

in text_lauraboykin
Laura Boykin with some of the farmers she seeks to help through her scientific work. Credit: Laura Boykin.

So they have been studying the genome sequence of the whiteflies to determine which ones pose the most risk. And they hope to eventually develop a whitefly-resistant variety of cassava.

In the meantime, Boykin and her colleagues help where they can by advising farmers when to plant what species of food in a bid to prevent whitefly impact.

In doing so, they are also building the capacity of East African scientists wanting to work on genomes and the supercomputing required to decode DNA sequencing.

Helping her fellow scientists in this way is what really fires her up.

“If you look around in science, you’ll see it’s a white person’s game,” she says.

“I don’t think that’s right and it’s boring. Scientists in East Africa are brilliant – they just don’t have the same access to resources. So I want to do everything I can to help remove those barriers.

“When I’m in a nursing home I’m not going to remember the papers I’ve written, I’m going to remember the people—that’s what gets me out of bed and makes me so excited about my work.”

Boykin is sharing tales of her fight against the whitefly at Pint of Science Australia.

– Samille Mitchell

This article was first published by ScienceNetwork WA on 21 May 2015. Read the original article here.

supercomputer

Supercomputer empowers scientists

Creating commercial drugs these days seems to require more time at the keyboard than in the lab as these drugs can be designed on a computer long before any chemicals are combined.

Computer-based simulations test the design created by the theoretical chemist and quickly indicate any potential problems or enhancements.

This process generates data, and lots of it. So in order to provide University of Western Australia (UWA) chemistry researchers with the power to perform these big data simulations the university built its own supercomputer, Pople.

Dr Amir Karton, head of UWA’s computational chemistry lab says the supercomputer is named after Sir John Pople who was one of the pioneers of computational chemistry for which he won a Nobel Prize in 1998.

“We model very large systems ranging from enzymes to nano materials to design proteins, drugs and catalysts, using multi-scale theoretical procedures, and Pople was designed for such simulations,” Karton says.

“These simulations will tell you how other drugs will interact with your design and what modifications you will need to do to the drug to make it more effective.”

Pople was designed by UWA and while it is small compared to Magnus at the Pawsey Supercomputing Centre it gives the researchers exactly what they want.

That being a multi-core processor, a large and very fast local disk as well as 512 GB of memory in which to run the simulations.

Magnus’ power equivalent to 6 million iPads

While Magnus has nearly 36,000 processors—processing power equivalent to six million iPads running at once—Pople has just 2316 processors.

But, Magnus was designed with large computational projects like the Square Kilometre Array in mind whereas Pople provides such services to individual users.

Dr Dean Taylor, the faculty’s systems administrator says the total amount of memory available to Pople amounts to 7.8 TB, and the total amount of disk space is 153 TB, which could fill almost two thousand 80 GB Classic iPods.

By comparison a top-of-the-range gaming PC might have four processors, 16 GB of memory and a 2 TB disk drive.

A large portion of the Intel Xeon processors (1896 cores) were donated by Perth-based geoscience company DownUnder GeoSolutions.

DownUnder GeoSolutions’ managing director Dr Matthew Lamont says it is the company’s way of investing in the future.

Pople will also assist physics and biology research involving the nature of gravitational waves and the combustion processes that generate compounds important for seed germination.

– Chris Marr

This article was first published by ScienceNetwork Western Australia on 30 April 2016. Read the original article here.

bridging the innovation gap

Bridging the innovation gap

Professor Fiona M Wood, FRACS AM, is the inventor of spray-on skin, and Director of the Burns Service of Western Australia and Burn Injury Research Unit at the University of Western Australia.

We encounter innovation at every turn in our daily lives. The capacity to live as we do today is through the evolution of yesterday’s ideas. But is this as good as it gets? Clearly the answer is ‘No!’ – we continually learn from today to ensure tomorrow is better.

We innovate by identifying a problem and seeking answers. The chain of activities from question to answer is long and complex: discovering a problem, chasing down a solution (supported by a rigorous research framework), dealing with regulatory safety hurdles, scaling the solution from the lab to the marketplace, and delivering it in a practical and cost-effective way – a process that requires tenacity above all else.

Australia enjoys a level of excellence in a number of areas of research, and it is time to connect these areas and realise their potential on the world stage. There are plenty of hurdles on the path to commercialisation; however, those who have succeeded in creating innovative, commercially successful outcomes provide us with the encouraging examples we need to keep going.

Linking problems with solutions is a skill we need to teach at every opportunity. Science, technology, engineering and mathematics (STEM) are pivotal to the success of our economy, but their potential lies in their utilisation: in problem solving, and in developing the skills to collaborate and progress along the innovation chain.

Professor Fiona M Wood, FRACS AM

Director of the Burns Service of WA and Burn Injury Research Unit at the University of Western Australia

Read next: Dr Alan Finkel AO, Chief Scientist of Australia on Engineering solutions.

Spread the word: Help to grow Australia’s innovation knowhow! Share this piece using the social media buttons below.

Be part of the conversation: Share your ideas on innovating Australia in the comments section below. We’d love to hear from you!

type-1 diabetes

Microcapsules for type-1 diabetes

Curtin University researchers are a step closer to establishing a way for people with type-1 diabetes to introduce insulin into the body without the need for injections, through the development of a unique microcapsule.

People with type-1 diabetes, a condition where the immune system destroys cells in the pancreas, generally have to inject themselves with insulin daily and test glucose levels multiple times a day.

Dr Hani Al-Salami from Curtin’s School of Pharmacy is leading the collaborative project using cutting-edge microencapsulation technologies to design and test whether microcapsules are a viable alternative treatment for people with type-1 diabetes.

“Since 1921, injecting insulin into muscle or fat tissue has been the only treatment option for patients with type-1 diabetes,” Al-Salami says.

“The ideal way to treat the illness, however, would be to have something, like a microcapsule, that stays in the body and works long-term to treat the uncontrolled blood glucose associated with diabetes.”

The microcapsule contains pancreatic cells which can be implanted in the body and deliver insulin to the blood stream.

“We hope the microcapsules might complement or even replace the use of insulin in the long-term, but we are still a way off. Still, the progress is encouraging and quite positive for people with type-1 diabetes,” Al-Salami says.

Researchers say the biggest challenge in the project to date has been creating a microcapsule that could carry the cells safely, for an extended period of time, without causing an unwanted reaction by the body such as inflammation or graft failure.

“We are currently carrying out multiple analyses examining various formulations and microencapsulating methods, in order to ascertain optimum engineered microcapsules capable of supporting cell survival and functionality,” Al-Salami says.

The research was conducted in partnership with the University of Western Australia. Click here to read the scientific paper, published in Biotechnology Progress.

– Susanna Wolz

This article was first published by Curtin University. Read the original media release here.

 

Gravity waves hello

Gravity waves hello

Featured image above credit: NASA/C. Henze

For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.

Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.

The gravitational waves were detected by twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Louisiana and Washington in the USA. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) and the GEO600 Collaboration) and the Virgo Collaboration.

Australian scientists from The Australian National University (ANU), the University of Adelaide, The University of Melbourne, the University of Western Australia (UWA), Monash University and Charles Sturt University (CSU), contributed to the discovery and helped build some of the super-sensitive instruments used to detect the gravitational waves.

Leader of the Australian Partnership in Advanced LIGO Professor David McClelland from ANU, says the observation would open up new fields of research to help scientists better understand the universe.

“The collision of the two black holes was the most violent event ever recorded,” McClelland says.

“To detect it, we have built the largest experiment ever – two detectors 4000 km apart with the most sensitive equipment ever made, which has detected the smallest signal ever measured.”

Associate Professor Peter Veitch from University of Adelaide says the discovery was the culmination of decades of research and development in Australia and internationally.

“The Advanced LIGO detectors are a technological triumph and the discovery has provided undeniable proof that Einstein’s gravitational waves and black holes exist,” Veitch says.

“I have spent 35 years working towards this detection and the success is very sweet.”

Professor David Blair from UWA says the black hole collision detected by LIGO was invisible to all previous telescopes, despite being the most violent event ever measured.

“Gravitational waves are akin to sound waves that travelled through space at the speed of light,” Blair says.

“Up to now humanity has been deaf to the universe. Suddenly we know how to listen. The universe has spoken and we have understood.”

With its first discovery, LIGO is already changing how astronomers view the universe, says LIGO researcher Dr Eric Thrane from Monash University.

“The discovery of this gravitational wave suggests that merging black holes are heavier and more numerous than many researchers previously believed,” Thrane says.

“This bodes well for detection of large populations of distant black holes research carried out by our team at Monash University. It will be intriguing to see what other sources of gravitational waves are out there, waiting to be discovered.”

The success of LIGO promised a new epoch of discovery, says Professor Andrew Melatos, from The University of Melbourne.

“Humanity is at the start of something profound. Gravitational waves let us peer right into the heart of some of the most extreme environments in the Universe, like black holes and neutron stars, to do fundamental physics experiments under conditions that can never be copied in a lab on Earth,” Melatos says.

“It is very exciting to think that we now have a new and powerful tool at our disposal to unlock the secrets of all this beautiful physics.”

Dr Philip Charlton from CSU says the discovery opened a new window on the universe.

“In the same way that radio astronomy led to the discovery of the cosmic microwave background, the ability to ‘see’ in the gravitational wave spectrum will likely to lead to unexpected discoveries,” he says.

Professor Susan Scott, who studies General Relativity at ANU, says observing this black hole merger was an important test for Einstein’s theory.

“It has passed with flying colours its first test in the strong gravity regime which is a major triumph.”

“We now have at our disposal a tool to probe much further back into the Universe than is possible with light, to its earliest epoch.”

Australian technology used in the discovery has already spun off into a number of commercial applications. For example, development of the test and measurement system MOKU:Lab by Liquid Instruments; vibration isolation for airborne gravimeters for geophysical exploration; high power lasers for remote mapping of wind-fields, and for airborne searches for methane leaks in gas pipelines.

This information was first shared by Monash University on 12 February 2016. Read their news story here