Smart needle uses IOT in brain surgery

February 02, 2017

A smart needle with an embedded camera is helping doctors perform safer brain surgery.

Smart Needle

The smart needle was developed by researchers at the University of Adelaide in South Australia and uses a tiny camera to identify at-risk blood vessels.

The probe, which is the size of a human hair, uses an infrared light to look through the brain.

It then uses the Internet of Things to send the information to a computer in real-time and alerts doctors of any abnormalities.

The project was a collaboration with the University of Western Australia and Sir Charles Gairdner Hospital where a six-month pilot trial of the smart needle was run.

Research leader and Chair of the University of Adelaide’s Centre of Excellence for Nanoscale BioPhotonics Robert McLaughlin says researchers are also looking at other surgery applications for the device including minimally invasive surgery.

He says surgeons previously relied on scans taken prior to surgery to avoid hitting blood vessels but the smart needle is a more accurate method that highlighted their locations in real-time.

“There are about 256,000 cases of brain cancer a year and about 2.3 per cent of the time you can make a significant impact that could end in a stroke or death,” he says.

“This (smart needle) would help that … it works sort of like an ultrasound but with light instead.

“It also has smart software that takes the picture, analyses it and it can determine if what it is seeing is a blood vessel or tissue.”

Smart Needle
Professor Robert McLaughlin (right) with the smart needle.

Professor McLaughlin says the smart needle has potential to be used in other surgical procedures. 

The trial at the Sir Charles Gairdner Hospital involved 12 patients who were undergoing craniotomies.

The needle with a 200-micron wide camera was successfully able to identify blood vessels during the surgery.

Professor Christopher Lind, who led the trial, says having a needle that could see blood vessels as surgeons proceeded through the brain is a medical breakthrough.

“It will open the way for safer surgery, allowing us to do things we’ve not been able to do before,” he says.

The smart needle will be ready for formal clinical trials in 2018.

Professor McLaughlin says he hopes manufacturing of the smart needle will begin within five years.

The project was partially funded by the Australian Research Council, the National Health and Medical Research Council and the South Australian Government.

The Australia Government has committed $23 million until 2021 to encourage vital research discoveries through the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics.

– Caleb Radford

This article was first published by The Lead on 20 January 2017. Read the original article here.

Related stories

Leave a Reply

Your email address will not be published. Required fields are marked *