Brace yourselves

August 10, 2015

It’s a tough journey from the lab bench to the real world but it’s one worth taking. Read why we need to work harder to reap the rewards of innovation.

A hand with a cartoon overlay describing the process from idea to product to innovation

Innovation works something like this. A research scientist has a brilliant idea. It’s developed into a product and commercialised. The general public love it and buy lots. The developers become wealthy. Many lives are greatly improved.

Sorry, let’s try again.

A research scientist has a brilliant idea. An arduous process follows to develop a product. Once it’s finally on the market, the public are afraid/suspicious of the underlying technology. Commercialisation fails. Few lives are improved.

Reality lies somewhere in between. Why? Let’s begin with a simple definition: innovation is doing clever stuff in a smarter way for a good outcome. It can be about a product, process or service. The impact can be grand or incremental.

To some, innovation means certain economic growth and social betterment. Examples of brilliant science leading to great products with huge consumer demand are smartphones, WiFi, organic light emitting diode televisions, robotics.

Planet-wide changes, such as population and climate, create unique challenges needing new solutions. Science, coupled with innovation, has the potential to create such solutions… if we get the innovation side right.

Unfortunately for Australia, 21st century innovation isn’t based on the good fortunes of geography, geology and climate. We’ve long relied on digging up resources and selling them overseas, or on fattening sheep and exporting them.

Now as Professor Ian Chubb, Australia’s Chief Scientist, articulates: “There’s no question that at some point our economy is going to have to shift and become substantially different from what it is now and be based on innovation.”

300 9516382_ml

There is a clear and growing chasm between where we are and need to be. Australia’s challenge is to bridge that gap and move towards a sustainable economy less vulnerable than the one to which we are sentimentally attached that’s previously yielded the nation’s prosperity.

Australia does good science and is, sometimes, creative. But we have a poor record of commercialising good science and understanding innovation. The 2012 Innovation System Report points to a shortage of management education and innovative culture and highlights an imbalance between government versus private R&D spending. There’s a lack of: R&D growth in key areas; business access to publicly funded research expertise; mobility of researchers between academia and business; and a concerted national science, technology and innovation strategy.

Increasingly, research highlights the importance of incorporating consumer needs into successful innovation strategies to ensure acceptance of new products or services. There are examples – such as genetically modified (GM) crops as an agricultural productivity solution – in which developers provide answers where few people saw a problem. Alternatively, members of the public may believe research wrongly crosses an ethical divide – embryonic stem cell research is an example. Public rejection also occurs with solutions such as nanotechnologies, where misinformation about risks dominates information flow about the science.

It’s not just about selling products harder or better explaining the science. I’ve spent years in discussions with people opposed to GM, nanotechnology and vaccinations and their issues are rarely with the science. It’s more about personal values: from concerns about messing with nature and ethical fears over genetic information misuse; to opposition against monopolising agri-conglomerates. Align a product with public values and it has a better chance of a dream run. Clash with those values and there could be trouble.

It makes sense to ask end-users what they want. If the public had been consulted about GM science back in the mid-1990s, for example, we may not have seen agricultural firms using the technology to develop herbicide- or pesticide-resistant broadacre crops, but perhaps non-food crops that produce pharmaceuticals or healthier foods, with more public support.

More contentious and innovative research is currently underway in Australia. The potential benefits are enormous. But their applications will need strong institutional support and community endorsement, skilled developers and sufficient funds for commercialisation. A lot of very clever people will need to cooperate in new ways to share old wisdom and new ways of thinking.

Craig square
Craig Cormick is Manager of National Operations, CSIRO Education

This is an edited version of an article from The Curious Country, ANU Press, 2013

Related stories

Leave a Reply

Your email address will not be published. Required fields are marked *